
HAL Id: hal-01781554
https://hal.archives-ouvertes.fr/hal-01781554v3

Submitted on 3 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secure Multi-Party Matrix Multiplication Based on
Strassen-Winograd Algorithm

Jean-Guillaume Dumas, Pascal Lafourcade, Julio Fenner, David Lucas,
Jean-Baptiste Orfila, Clement Pernet, Maxime Puys

To cite this version:
Jean-Guillaume Dumas, Pascal Lafourcade, Julio Fenner, David Lucas, Jean-Baptiste Orfila, et al..
Secure Multi-Party Matrix Multiplication Based on Strassen-Winograd Algorithm. The 14th Interna-
tional Workshop on Security (IWSEC 2019), Aug 2019, Tokyo, Japan. �hal-01781554v3�

https://hal.archives-ouvertes.fr/hal-01781554v3
https://hal.archives-ouvertes.fr

Secure Multiparty Matrix Multiplication Based
on Strassen-Winograd Algorithm ?

Jean-Guillaume Dumas1, Pascal Lafourcade2, Julio Lopez Fenner3, David
Lucas1, Jean-Baptiste Orfila1, Clément Pernet1, and Maxime Puys1

1 Univ. Grenoble Alpes, CNRS, Grenoble INP??, LJK, VERIMAG, 38000 Grenoble,
France. fistname.lastname@univ-grenoble-alpes.fr

2 LIMOS, Université Clermont Auvergne. 1, rue de Chebarde, 63178 Aubière.
France.pascal.lafourcade@uca.fr

3 Universidad de La Frontera, Departamento De Ingenieria Matematica. Av.
Francisco Salazar 01145, Temuco, Chile.julio.lopez@ufrontera.cl

Abstract. This paper presents a secure multiparty computation proto-
col for the Strassen-Winograd matrix multiplication algorithm. We focus
on the setting in which any given player knows only one row (or one
block of rows) of both input matrices and learns the corresponding row
(or block of rows) of the resulting product matrix. Neither the player
initial data, nor the intermediate values, even during the recurrence part
of the algorithm, are ever revealed to other players. We use a combina-
tion of partial homomorphic encryption schemes and additive masking
techniques together with a novel schedule for the location and encryption
layout of all intermediate computations to preserve privacy. Compared
to state of the art protocols, the asymptotic communication volume of
our construction is reduced from O(n3) to O(n2.81). This improvement
in terms of communication volume arises with matrices of dimension as
small as n = 96 which is confirmed by experiments.

1 Introduction

Secure multiparty computations (MPC) allows n players to compute together
the output of some function, using private inputs without revealing them. This
is useful, e.g., for a distributed evaluation of trust, as defined in [17,10]. In this
context, players compute a confidence level by combining their mutual degrees
of trust. This aggregation of trust among players can be represented as a matrix
product C = A×B, where each player knows one row of the matrix containing
their partial trust towards their neighbors and the network has to compute a dis-
tributed matrix exponentiation, which reduces to several matrix multiplications.
In this paper we thus focus on this particular layout of data, and on multiparty
matrix multiplication of dimension N×N with N players.

? This research was partly supported by the OpenDreamKit Horizon 2020 European
Research Infrastructures project (#676541).

?? Institute of Engineering, Univ. Grenoble Alpes

http://opendreamkit.org/
https://ec.europa.eu/programmes/horizon2020/
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/european-research-infrastructures-including-e-infrastructures
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/european-research-infrastructures-including-e-infrastructures
http://cordis.europa.eu/project/rcn/198334_en.html

Several tools exist to design MPC protocols, like Shamir’s secret sharing
scheme [27], homomorphic encryption [13], oblivious transfer [5] or using a
Trusted Third Party [8]. Then, several MPC implementations are available4.
Some of them are for two parties only and most of the others are generic and
transform programs into circuits or use oblivious transfer [7,26,6,16,23]. For in-
stance the symmetric system solving phase of the Linreg-MPC software is
reported in [12] to take about 45 minutes for n = 200, while, in [11], a secure
multiparty specific algorithm, YTP-SS, was developed for matrix multiplication
requires about a hundred seconds to perform an n = 200 matrix multiplica-
tion. These timings, however, do not take into account communications, but for
multiparty matrix multiplication, the number of communications and the num-
ber of operations should be within the same order of magnitude. Our goal is
thus to improve on existing algorithms, primarily in terms of this number of
communications (we do not minimize the number of messages, as in [15], but
instead consider the overall volume). Our idea is to use an algorithm with a lower
time and communication complexity for matrix multiplication. Strassen’s algo-
rithm [28] was the first sub-cubic time algorithm, with an exponent log2 7 ≈ 2.81,
with a complexity of O(n2.81) and we hence construct an MPC protocol based
Winograd’s variant of this algorithm5 [1, Ex.6.5].

To preserve the inputs privacy during the computation of a matrix multi-
plication, the use of homomorphic encryption schemes appears to be natural.
While we could use a fully homomorphic encryption scheme, it would slow down
the protocol unreasonably. Instead, we will use partial homomorphic encryption
scheme [3] as they allow to perform the operations we need, namely:

1. Dsk(Epk(m1)× Epk(m2)) = m1 +m2 (Additive homomorphism)
2. Dsk(Epk(m1)m2) = m1 ×m2 (Cipher/clear multiplicative homomorphism)

Several cryptosystems do satisfy these, e.g., the ones designed by Naccache-
Stern or Paillier [24,25]. The former is usually costlier than the latter. However,
as the former allow parties to agree on a common message block size, which
solves the issue of defining a consistent message space among them, we choose
here to use the Naccache-Stern cryptosystem.

Finally, Strassen-Winograd algorithm involves numerous additions and sub-
tractions on parts of the A and B matrices that are held by different players.
Security concerns require then that these entries should be encrypted from the
start, contrarily to [11]. As a consequence, the classical matrix multiplication
can no longer be used as stated in the latter reference, even for the base case
of the recursive algorithm. We therefore propose an alternative base case. Its
arithmetic cost is higher, but it involves an equivalent amount of communica-
tion. We shall show that this choice combined with our multiparty recursive

4 http://www.multipartycomputation.com/mpc-software
5 The best value known to date, due to LeGall’s [21], of approximately 2.3728639.

However, only a few sub-cubic time algorithms are competitive in practice and used
in software [9,2,19] (see also [20] and references therein), among which Strassen’s
algorithm and its variants stand out as a very effective one in practice.

2

http://www.multipartycomputation.com/mpc-software

Strassen-Winograd algorithm compares favorably to existing implementations
in communication cost for matrices of dimensions larger than N = 96.

Hypotheses. In this paper, we will only consider the case of semi-honest (also
called honest-but-curious) adversaries. Such adversaries, represented as proba-
bilistic polynomial time machines, try to gather as many information as possi-
ble during the execution of the protocol, and can locally run any computation
based on this information in order to deduce some private input. However, they
strictly follow protocol specifications. We also consider that communications are
performed over secure channels: this means transferred data is resistant to eaves-
dropping and that only the recipient will learn anything from communicated
data.

Contributions. We propose an instance of Strassen-Winograd’s algorithm in a
secure multiparty computation setting where the input and output matrices
are split and shared row-wise. More precisely, this paper presents the following
contributions:
1. A schedule of the operations of Strassen-Winograd’s algorithm and of a

classic matrix multiplication algorithm compliant with a privacy-preserving
location and encryption data-layout;

2. A recursive protocol proven secure against one semi-honest adversary;
3. A reduction of the overall amount of communication fromO(N3) toO(N2.801)

for the multiparty multiplication of N ×N matrices;
4. This improvement is confirmed by experiments showing advantages of this

approach over alternative implementations of MPC matrix multiplication
protocols.
The article proceeds as follows: Section 2 presents Strassen-Winograd and the

concurrent YTP-SS algorithms. There, we also define the dedicated data layout
and the cryptographic tools we will use. Next, in Section 3, we first describes our
building block protocols, with their security analysis. Second, we present in this
Section a new cubic-time matrix multiplication algorithm on ciphered entries
to be used as a base case. Section 4 describes the complete novel sub-cubic
MPC Strassen-Winograd algorithm and details its theoretical communication
cost. Finally, Section 5 closes with practical comparisons between our C++ and
concurrent implementations.

2 Preliminaries

2.1 Strassen-Winograd algorithm

C = A×B by splitting the input matrices in four quadrants of equal dimensions:
A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
. Each recursive call consists in 22 block

operations:
– 8 additions:]

S1 ← A21 +A22 S2 ← S1 −A11 S3 ← A11 −A21 S4 ← A12 − S2

T1 ← B12 −B11 T2 ← B22 − T1 T3 ← B22 −B12 T4 ← T2 −B21

3

– 7 recursive multiplications:

R1 ← A11 ×B11 R2 ← A12 ×B21 R3 ← S4 ×B22 R4 ← A22 × T4

R5 ← S1 × T1 R6 ← S2 × T2 R7 ← S3 × T3

– 7 final additions:
U1 ← R1 +R2 U2 ← R1 +R6 U3 ← U2 +R7 U4 ← U2 +R5

U5 ← U4 +R3 U6 ← U3 −R4 U7 ← U3 +R5

– The result is the matrix: C =
[
U1 U5

U6 U7

]
.

Although the recursion could be run down to products of 1×1 matrices, it is
commonly stopped at a fixed dimension threshold, where a classical cubic time
algorithm is then used, in order to reduce the overhead of recursion on small
dimension instances. For the sake of simplicity, we consider henceforth that the
initial input matrices are of dimension N×N , with N = b2`, so that up to `
recursive calls can be made without having to deal with padding with zeroes nor
with peeling thin rows or columns.

2.2 Data layout and encryption

We consider the setting where the two input matrices A and B have dimension
N ×N and each of the N players stores one row of A and the corresponding row
of B and learns the corresponding row of C = A×B. In this setting, the YTP-SS

Algorithm [11, Algorithm 15] can compute C by encrypting the rows of A only
and then relying on homomorphic multiplications of encrypted coefficients of A
by plain coefficients of B.

However, Strassen’s algorithm, considered here, requires adding and subtract-
ing submatrices of B of distinct row index sets (e.g. T3 ← B22 − B12). These
operations on non-ciphered rows of B would automatically leak information. We
therefore impose that the rows of both operands A and B, of the result C and of
any intermediate matrix are encrypted by the public key of a player who is not
the one hosting the row. We therefore introduce the notion of location and key
sequences for a matrix, to identify the roles of the players in this data layout:

Definition 1. An n× n matrix A of ciphered values has location sequence L =
(l1, l2, . . . , ln) and key sequence K = (k1, k2, . . . , kn) if player Pli stores row i of
A, that was encrypted with the public key pkki of player Pki for all 1 ≤ i ≤ n.

Example 1. For n = 3, consider the location sequence L = (2, 3, 1) and key
sequence K = (3, 1, 2). This means that player P2 stores row 1 of A encrypted
with the public key of player P3; player P3 stores row 2 of A encrypted with the
public key of player P1 and finally player P1 stores row 3 of A encrypted with
the public key of player P2.

In the matrix multiplication algorithms presented in the later sections, the
location and key sequences of operand A and C will always be identical. On the
other hand the location and key sequences of B may equal those of A (in the

4

first recursive call), or differ but they must then have an empty intersection with
those of A.

A recursive step in Strassen-Winograd algorithm splits the matrices A, B
and C into four quadrants of equal dimensions. Hence their key and location se-
quences are split into two sub-sequences: for X ∈ {A,B,C}, LX = (LXU , LXL)
and KX = (KXU ,KXL) such that (LXU ,KXU) are the location and key se-
quences for the upper half of X and (LXL ,KXL) are the location and key se-
quences for the lower half of X.

Figure 1 summarizes these notations.

AU

AL CL

CU

Key sequences

BU

BL

KAU

KALLAL

LAU

LBU

LBL KBL

KBU

Location sequences

×

=

Fig. 1. Recursive splitting of the location and key sequences of the input and output
operands in Strassen-Winograd algorithm.

More formally, we present in Definition 2 the two distinct data layouts used
in our algorithms: one for the recursive levels of Strassen-Winograd, and one for
its base case.

Definition 2. Let N ∈ N, n ≤ N and A and B two n×n matrices with location
and key sequences (LA,KA) ∈ ({1..N}n)2 and (LB ,KB) ∈ ({1..N}n)2.
1. (LA,KA, LB ,KB) is a valid data layout if

(a) ∀i ∈ {1..n}, LA[i] 6= KA[i] and LB [i] 6= KB [i].
(b) ∀i, j ∈ {1..n} with i 6= j, LA[i] 6= LA[j] and LB [i] 6= LB [j]
(c) ∀i, j ∈ {1..n} with i 6= j, KA[i] 6= KA[j] and KB [i] 6= KB [j]

2. (LA,KA, LB ,KB) is a base case or a 0-recursive data layout if it is a valid
data layout and (LA ∪KA) ∩ (LB ∪KB) = ∅.

3. (LA,KA, LB ,KB) is a `-recursive data layout if it is a valid data layout and
(a) (LAU ∪KAU) ∩ (LAL ∪KAL) = ∅ = (LBU ∪KBU) ∩ (LBL ∪KBL)
(b) (LAU ,KAU , LBL ,KBL) and (LAL ,KAL , LBU ,KBU) are both (`−1)-recursive

data layouts

For N = b2`, we propose to use the following values for the location and key
sequences, to form an `-recursive data layout:{

ki = i for 0 ≤ i < N
lib+j = ib+ (j + 1 mod b) for 0 ≤ i < N/b, and 0 ≤ j < b

(1)

5

For instance, for a product of dimension 12, with base case dimension b = 3,
this gives; LA = LB = LC = (1, 2, 0, 4, 5, 3, 7, 8, 6, 11, 9, 10) and KA = KB =
KC = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11).

2.3 Homomorphic encryption

Naccache-Stern cryptosystem. In the following, we use Naccache-Stern [24]
partially homomorphic cryptosystem, with security parameter 1λ, set up as fol-
lows:

Setup(1λ) : Select 2k small primes p1, . . . , p2k; compute u =
∏k
i=1 pi and v =∏2k

i=k+1 pi; let σ = u·v; uniformly select two large prime numbers a and b
of size λ/2; find f1 and f2 such that p = f1·a·u + 1 and q = f2·b·v + 1 are
primes; let m = p·q and randomly choose g of order aubv in Z∗m. The private
key is SK = (p1, . . . , p2k, p, q), the public key is PK = (σ, g,m).

EncryptPK(x) : for x ∈ Zσ, randomly choose r ∈ Zm and encrypt x as c =
EPK(x) ≡ rσ · gx mod m.

DecryptSK(c) : let φ = (p − 1)(q − 1), ci ≡ cφ/pi mod m and recover, by ex-
haustive search (pi is small), xi mod pi such that xi = loggφ/pi (ci) mod m.
Finally reconstruct x with the Chinese remaindering, x ≡ CRT ({xi, pi})
mod σ.

In the following, cleartexts will be elements of Zσ while ciphertexts are el-
ements of Zm. Note that while σ is shared by all players, there is a distinct
modulus Zm for each player. Consequently a plain text matrix has coefficients
in Zσ but in a layout where each row is encrypted using a different key pki,
its encryption is no longer a matrix but a sequence of rows over distinct rings
Zmpki . We will abusively refer to this ciphered data as the ciphered matrix.

Notations. Given some scalar u and a player A, we denote by {u}A, as a
shortcut to {u}pkA , the encryption of data u with the public key of A. This is
an element of ZmA . Similarly, we also denote by EA(u) the action of encrypting
the data u using the public key of A (this means that the player generating this
cipher-text knows the plaintext u. For a key sequence K and a matrix A over
Zσ, the ciphered matrix obtained by encrypting row i of A by K[i] is denoted by
{A}K . Row i of {A}K is over ZmK[i]

, where mK[i] is the modulus in the public

key of player PK[i]. We also denote by r
$← D the operation of drawing uniformly

at random r from a domain D.

2.4 Multiparty protocols security

Here, we recall some widely used notations and results for the security of multi-
party protocols.

6

Definition 3 (from [14]). Let f be a n-ary functionality, where fi(x1, ..., xn)
denotes the ith element of f(x1, ..., xn). For I = {i1, ..., it} ⊂ [n] = {1, ..., n},
we denote by fI(x1, ..., xm) the subsequence fi1(x1, ..., xn), ..., fit(x1, ..., xn). We
let xI = (xi1 , ..., xit). Let Π be a n-party protocol for computing f . The view of
the ith party during an execution of Π on x = (x1, ..., xn) is denoted viewΠi (x),
and for I, we let viewΠI (x) = (I, viewΠi1 (x), ..., viewΠit (x)). We say that Π securely
computes f if there exist a probabilistic polynomial time algorithm, such that for

every I ⊂ [n], we have: {SI((xI), fI(x)), f(x)}x
C≡ {viewΠI (x), outputΠ(x)}x.

Definition 4. Let f1, ..., fp(n) be functionalities, and let Π be a protocol. We say
that the protocol Π is executed in the f1, ..., fp(n)-hybrid mode if Π uses ideal
calls to a trusted party to compute f1, ..., fp(n).

Theorem 1 (from [22]). Let p(n) be a polynomial, let f1, ..., fp(n) be function-
alities, and let π1, ..., πp(n) be protocols such that each πi securely computes fi in
the presence of semi-honest adversaries. Let g be a functionality, and let Π be
a protocol that securely computes g in the f1, ..., fp(n)-hybrid model. Then, the
protocol Ππ1,...,πp(n) securely computes g in presence of semi-honest adversaries.

We will also need a function, which, given a small input is able to securely
and deterministically produce a stream of uniformly generated random values.
We will achieve this by using classical mask generation functions, as defined
in [18, Section 10.2]: a function which takes two parameters, a seed Z and a
length l and returns a random string of length l. We will then split the output
string in as many fragments as needed, and use each of these fragments as a
mask. Such function achieve an output indistinguishable property: if the seed is
unknown, it is impossible to distinguish between the output of an MGF and a
truly random string. Such secure functions exist, see for instance the one given
in [18] and in what follows, we will denote by MGF any function that have the
aforementioned security properties.

2.5 Relaxing an existing algorithm: YTP-SS

The matrix multiplication algorithm using the secure dot-product protocol YTP-SS [11,
Algorithm 15] is secure against semi-honest adversaries over insecure communica-
tion channels. In order to analyze the difference with our proposition, Protocol 7
MP-SW, we extract here the core of the former protocol, i.e., without the secur-
ization of the channel (that is we remove the protection of the players private
elements by random values, and the final communications to derandomize the
results). The resulting simplification is called MP-PDP and its costs are given in
Theorem 2. More details can be found in [11, Algorithm 15]

Theorem 2. For n players, [11, Algorithm 15], without the channel securiza-
tion, requires 2(n−1) communications. When used to compute a classical matrix
product, it requires n3 + n(n− 1) operations overall.

7

3 Toolbox

3.1 Initialization Phase

Before the actual computation, the involved parties need to agree on the location
and key sequences they will use, generate their key pairs, share their associated
public keys, cipher their input data and communicate it where needed. Proto-
col 1 shows how the input data is initially ciphered and dispatched: each party,
identified as Pi, i ∈ {1..N} starts with the i-th row of A and B, and, after
generating its own key pair, ciphers its row according to the key sequence.

Protocol 1 SW-Setup

Input: Two N × N matrices A and B over Zσ, where N = b2`, such that party Pi
knows the i-th row of A and the i-th row B for all i ∈ {1..N}. A location and a key
sequence L ∈ {1..N}N and K ∈ {1..N}N such that (L,K,L,K) form an `-recursive
data layout, following Definition 2. All parties know a security parameter λ.

Output: For all i ∈ {1..N}, party PL[i] learns vectors {ai,∗}K[i] and {bi,∗}K[i] and learns
the public key of every other party.

Goal: Generate key pairs for each party, cipher and distribute input matrices according
to their respective location and key sequences.
1. Key generation: for all i ∈ {1..N}, each party Pi locally executes

NaccacheSternSetup(1λ) to generate a pair of keys (pki, ski).
2. Broadcast keys: for all i ∈ {1..N}, party Pi broadcasts its public key pki.
3. Cipher inputs: for all i ∈ {1..N}, for all j ∈ [n], party Pi locally performs

NaccacheSternEncrypt(pkK[i], aij) and stores the result as a new vector {ai,∗}K[i].
It does the exact same operation with bi,∗ to get {bi,∗}K[i].

4. Distribute rows:
(a) Rows of A: for all i ∈ {1..N}, party Pi sends {ai,∗}K[i] to party PL[i].
(b) Rows of B: for all i ∈ {1..N}, party Pi sends {bi,∗}K[i] to party PL[i].

Finally, the protocol sends the ciphered row to the party hosting this row,
designated by the location sequence. For input matrices of size N , Protocol 1
requires 2N2 communications.

3.2 Multiparty copy

In the various subroutines that compose our algorithm, we will often need to
copy and recipher a vector from one Party to another following location and
key sequences. For this, one could use proxy reencryption protocols, but it is
simpler, in our setting, to instead mask and decrypt, using interaction. Protocol 2
describes protocol MP-COPY, performing this very operation for a given ciphered
element x hosted by Bob and encrypted for Dan, to its new location at Alice and
encrypted for Charlie. Here, Dan is in charge of performing the decryption and
the re-encryption of the element. To prevent Dan from learning the value of x,
Bob masks it additively with a random value. Bob therefore needs to clear out

8

this random mask on the value re-encrypted by Dan, with Charlie’s key, before
sending it to Alice. This protocol uses a total of 3 communications.

Protocol 2 MP-COPY
Input: Four parties, Alice, Bob, Charlie and Dan. Bob knows a ciphered element {x}D ∈
Zm (for x ∈ Zσ), ciphered using Dan’s public key.

Output: Alice learns the element {x}C , ciphered using Charlie’s public key.

Goal: Recipher from Dan to Charlie and transfer from Bob to Alice.
1. Add masking

(a) Random: Bob samples uniformly at random r ∈ Zσ
(b) Mask: Bob locally computes α = {x}D · gr = {x+ r}D ∈ Zm
(c) Communication: Bob sends α to Dan.

2. Recipher:
(a) Decipher: Dan computes β = NaccacheSternDecrypt(skD, α) = x+ r ∈ Zσ.
(b) Cipher: Dan computes γ = NaccacheSternEncrypt(pkC , β) ∈ Zm.
(c) Communication: Dan sends γ to Bob.

3. Remove masking:
(a) Unmask: Bob locally computes δ = γ · g−r = {x}C ∈ Zm
(b) Communication: Bob sends δ to Alice.

3.3 Classical Matrix Multiplication base case

We describe in this section an algorithm to perform classical matrix multiplica-
tions in the data and encryption layout of Definition 2. It consists in n2 scalar
products in which, products of elements ai,k of A by elements bk,j of B are
performed using the homomorphic multiplication between a ciphertext and a

plaintext: {ai,k}
bk,j
PK = {ai,kbk,j}PK , where PK is the public key that has been

used to cipher the element. Therefore, the coefficient bk,j should first be deci-
phered, and to avoid leaking information, it should also be masked beforehand
by some random value.

Protocol 3 takes care of masking and deciphering a whole column of B.
There, player Charlie is the only one able to decrypt the masked value βk,j =
{bk,j + tk,j}C . For this we require a stream of uniformly random values tk,j , that
can be sent. To reduce communications, we here instead use a mask generating
function (MGF) that generates this stream from a small seed. Then only the
seed need to be communicated to remove the mask. All players have of course
to agree beforehand on a choice for this mask generating function.

Protocol 4 shows how player Alice can then recover the ciphertext of one
product {ai,kbk,j}D. Alice sends her value {ai,k}D to player Charlie who then
performs the exponentiation, corresponding to a multiplication on the plaintexts,
and sends it back to Alice. Meanwhile Alice has received the seed and generated
the masking values tk,j to clean out the product. Finally each coefficient {ci,j}D
of the result is computed during a reduction step where player Alice simply
multiplies together all corresponding point-wise products.

9

Protocol 3 MaskAndDecrypt

Input: Two parties, further denoted as Bob and Charlie. They both know their own
private key, public keys of all the parties involved, the security parameter λ ∈ N and
the modulus m ∈ N. Moreover, Bob knows a seed sk ∈ N and a ciphered vector of size
n, {bk,∗}C , whose elements (bk,j) ∈ Znσ have been ciphered using Charlie’s public key.

Output: Charlie learns the additively masked plaintext of Bob’s input vector.

Goal: Perform the additive masking of Bob’s input vector, and let Charlie learn it.
1. Mask Bob’s input:

(a) Generate randoms: Bob performs MGF(sk, bitsize(σ)×n) and splits the
output in n shares of size bitsize(σ), denoted as tk,j for j ∈ {1..n}.

(b) Mask vector: for j ∈ {1..n}, Bob computes βk,j = {bk,j}C · gtk,j ∈ Zm.
(c) Communication: for j ∈ {1..n}, Bob sends βk,j to Charlie.

2. Finalize:
(a) Decipher: for j ∈ {1..n}, Charlie performs NaccacheSternDecrypt(skC , βk,j)

and stores the results in uk,j = bk,j + tk,j ∈ Zσ.

Protocol 4 PointwiseProducts
Input: Four parties, further denoted as Alice, Bob, Charlie and Dan. Alice knows a
ciphered {ai,k}D ∈ Zm for given i and k, ciphered using Dan’s public key. Bob knows a
seed sk ∈ N and Charlie knows a masked vector (uk,∗) ∈ Znσ (each coefficient is masked
by a random value).

Output: Alice learns all the ciphertexts {ai,kbk,j}D for j ∈ {1..n}.
Goal: Compute the point-wise products for naive matrix product on a given row
1. Communication: Alice sends {ai,k}D to Charlie
2. Multiplication: for j ∈ {1..n}, Charlie computes δi,k,j = {ai,k}

uk,j
D , δi,k,j ∈ Zm

3. Communication: for j ∈ {1..n}, Charlie sends δi,k,j to Alice.
4. Send seed: Bob sends sk to Alice
5. Generate and remove masks: Alice performs MGF(sk, bitsize(σ)×n) and splits

the output in n shares of size σ, denoted as tk,j for j ∈ {1..n}.
For j ∈ {1..n}, Alice computes:

εi,k,j = δi,k,j/
(
{ai,k}

tk,j
D

)
= {ai,k(bk,j + tk,j)− ai,ktk,j}D ∈ Zm.

Overall, Protocol 5 schedules these three operations. In the calls to Protocols
MaskAndDecrypt and PointwiseProducts, Alice is incarnated by Player PLA[i],
Bob by PLB [k], Charlie by PKB [k] and Dan by PKA[i].

Theorem 3. Protocol 5 correctly computes the product C = A×B in the spec-
ified layout. It requires a communication of n3 + 3n2 + n modular integers.

Proof. Correctness stems first from the fact that ci,j =
∑n
k=1 ai,kbk,j is obtained

“in the exponents” by the homomorphic properties (1). Second the only masks
applied, in Protocol 3, are all removed in Protocol 4. Now, the communication
cost in number of ring element is n for Protocol 3 and n + 1 for Protocol 4.
Protocol 3 and Protocol 4 also send one seed, which, for simplicity, we consider
smaller than a modular integer. Overall this yields a communication cost lower
than n(n+ 1) + n2(n+ 2) = n3 + 3n2 + n modular integers for Protocol 5. ut

10

Protocol 5 BaseCase
Input: two n× n matrices {A}KA and {B}KB distributed and ciphered according to a
base-case data layout (LA,KA, LB ,KB) ∈ ({1..N}n)4 among parties (P1, . . . , PN) as
in Definition 2,

Output: Matrix C = A × B is distributed and ciphered among parties (P1, . . . , PN)
according to the location and key sequences (LA,KA).

Goal: Compute C = A×B distributed and ciphered in the same way as A is.
1. Computation:

For all k ∈ {1..n}
(a) Choose a seed: Party PLB [k] samples uniformly at random a seed sk ∈ N

according to the security parameter λ.
(b) Parties PLB [k] and PKB [k] run MaskAndDecrypt on vector {bk,∗}KB [k]

(c) For all i ∈ {1..n}
Parties PLA[i], PLB [k], PKB [k] and PKA[i] run PointwiseProducts where

Parties PLA[i] learn εi,k,j = {ai,kbk,j}KA[i] for all j ∈ {1..n}.
2. Reduction: for all i ∈ {1..n} Party PLA[i] computes {ci,j}KA[i] ←

∏n
k=1 εi,k,j

3.4 Security Analysis

From the formalization of the different protocols we can state the security of the
overall base case for matrix multiplication in the following Theorem 4.

Theorem 4. If players share a 0-data-layout, Protocol BaseCase is secure against
one semi-honest adversary.

The idea is to start by proving the security of the subprotocols and then use
the composition theorem and the data layout to prove the security of the double
loop of Protocol BaseCase. The full formal proof is given in Appendix A.1.

4 Multiparty Strassen-Winograd

4.1 Operation schedule in MP-SW

The 22 operations in a recursive step of Strassen-Winograd’s algorithm is com-
posed by 15 matrix additions and 7 recursive calls. The matrix additions are per-
formed using component-wise homomorphic additions, denoted by HOM-MAT-ADD:
each player performs locally a simple homomorphic addition of the rows of
the two input operands that she stores. Homomorphic subtraction, denoted by
HOM-MAT-SUB, works similarly. However, this requires that the two operands
share the same key and location sequences. To ensure this, some matrices will
be copied from one key-location sequence to another, using a multiparty matrix
copy, denoted by MP-MAT-COPY. The location sequences of the input an out-
put are non-intersecting (and therefore so are the related key sequences). These
operations are achieved by n2 instances of MP-COPY (Protocol 2) as shown in
Protocol 6.

Theorem 5. Assuming a l-data layout, Protocol MP-MAT-COPY is secure against
one semi-honest adversary.

11

Protocol 6 MP-MAT-COPY
Input: an n× n matrix {A}KA distributed and ciphered according to a location and a
key sequence (LA,KA) ∈ ({1..N}n)2 among parties (P1, . . . , PN) following Definition 2
and a location-key sequence (L′,K′).

Output: A copy {A}K′ is distributed and ciphered among parties (P1, . . . , PN) accord-
ing to the location and key sequences (L′,K′).

For all i, j ∈ {1..n}2
Parties PL′[i], PL[i], PK[i] and PK′[i] run MP-COPY to copy {ai,j}K[i] to {ai,j}K′[i]

We only give a sketch of the proof, since its very similar to the one for the
MaskAndDecrypt protocol within the proof of Theorem 4.

Proof. First, we prove that MP-COPY is secure against one semi-honest adversary:
from the data layout or the added randomness, each players only see ciphers
or additively masked values so that it does not lean anything from the execu-
tion. Then, we prove the security in an hybrid model where calls to MP-COPY

are replaced by an equivalent ideal functionality. Since the output is ciphered
accordingly to the data layout, a simulation by ciphering random values is com-
putationally indistinguishable from the real execution. Finally, by sequentially
composing calls to the MP-COPY protocol, we apply the sequential composition
theorem to conclude. ut

We propose in Protocol 7 a scheduling of these operations and data movement
ensuring that all additions can be made homomorphically, that the key and
location sequences for all seven recursive calls satisfy the requirements for a base-
case data-layout (Definition 2) and finally that the output matrix also follows
the location and key sequences of the first operand. The last three columns in
Protocol 7 indicate the location sequences of the input and output operands for
each operation.

Note that the initial problem requires that both operands A and B share
the same key and location sequences (so that matrix squaring is possible). How-
ever, the base case protocol (Protocol 5) requires that these sequences are non-
intersecting. In order to satisfy these two constraints the recursive Strassen-
Winograd algorithm is presented with a location and key sequence for A (LA
and KA) and a location and key sequence for B (LB and KB). The algorithm
does not require that they are non intersecting, but ensures that from the first
recursive call, they will always be, so as to fit with the requirement of the base
case, Protocol 5.

Lemma 1. The total communication cost of a recursive level of MP-SW following

the schedule defined Protocol 7, Step 2 is 18
(
n
2

)2
communications.

Proof. The only communication are that of the 6 calls to MP-MAT-COPY, each
accounting for 3(n/2)2 communication. ut

Finally, our main security result is that of the following Theorem 6. The full
proof relies on a sequence of hybrid games, where each transition is based on
indistinguishability and is given in Appendix A.2.

12

Protocol 7 MP-SW
Input: two n × n matrices {A}KA and {B}KB , distributed and ciphered according to
an `-recursive data layout (LA,KA, LB ,KB) ∈ ({1..N}n)4 among parties (P1, . . . , PN)
following Definition 2, where n = b2`.

Output: {C}KA = {A × B}KA , distributed and ciphered among parties (P1, . . . , PN)
according to the location and key sequences (LA,KA).
1. If ` = 0: Parties in (LA,KA) and (LB ,KB) run BaseCase on {A}KA and {B}KB
2. Else

In1 loc. In2 loc. Out loc.

{S1}KAL ← HOM-MAT-ADD ({A21}KAL , {A22}KAL) LAL LAL LAL
{A′11}KAL ← MP-MAT-COPY ({A11}KAU , (LAL ,KAL)) LAU LAL
{S2}KAL ← HOM-MAT-SUB ({S1}KAL , {A

′
11}KAL) LAL LAL LAL

{S3}KAL ← HOM-MAT-SUB ({A′11}KAL , {A21}KAL) LAL LAL LAL
{S′2}KAU ← MP-MAT-COPY ({S2}KAL , (LAU ,KAU)) LAL LAU
{S4}KAU ← HOM-MAT-SUB ({A12}KAU , {S

′
2}KAU) LAU LAU LAU

{T1}KBU ← HOM-MAT-SUB ({B12}KBU , {B11}KBU) LBU LBU LBU
{B′22}KBU ← MP-MAT-COPY ({B22}KBL , (LBU ,KBU)) LBL LBU
{T2}KBU ← HOM-MAT-SUB ({B′22}KBU , {T1}KBU) LBU LBU LBU
{T3}KBU ← HOM-MAT-SUB ({B′22}KBU , {B12}KBU) LBU LBU LBU
{B′21}KBU ← MP-MAT-COPY ({B21}KBL , (LBU ,KBU)) LBL LBU
{T4}KBU ← HOM-MAT-SUB ({T2}KBU , {B

′
21}KBU) LBU LBU LBU

{R1}KAL ← MP-SW ({A′11}KAL , {B11}KBU) LAL LBU LAL
{R2}KAU ← MP-SW ({A12}KAU , {B21}KBL) LAU LBL LAU
{R3}KAU ← MP-SW ({S4}KAU , {B22}KBL) LAU LBL LAU
{R4}KAL ← MP-SW ({A22}KAL , {T4}KBU) LAL LBU LAL
{R5}KAL ← MP-SW ({S1}KAL , {T1}KBU) LAL LBU LAL
{R6}KAL ← MP-SW ({S2}KAL , {T2}KBU) LAL LBU LAL
{R7}KAL ← MP-SW ({S3}KAL , {T3}KBU) LAL LBU LAL

{R′1}KAU ← MP-MAT-COPY ({R1}KAL , (LAU ,KAU)) LAL LAU
{U1}KAU ← HOM-MAT-ADD ({R′1}KAU , {R2}KAU) LAU LAU LAU
{U2}KAL ← HOM-MAT-ADD ({R1}KAL , {R6}KAL) LAL LAL LAL
{U3}KAL ← HOM-MAT-ADD ({U2}KAL , {R7}KAL) LAL LAL LAL
{U4}KAL ← HOM-MAT-ADD ({U2}KAL , {R5}KAL) LAL LAL LAL
{U ′4}KAU ← MP-MAT-COPY ({U4}KAL , (LAU ,KAU)) LAL LAU
{U5}KAU ← HOM-MAT-ADD ({U ′4}KAU , {R3}KAU) LAU LAU LAU
{U6}KAL ← HOM-MAT-SUB ({U3}KAL , {R4}KAL) LAL LAL LAL
{U7}KAL ← HOM-MAT-ADD ({U3}KAL , {R5}KAL) LAL LAL LAL

3. End result {C}KA ←
[
{U1}KAU {U5}KAU
{U6}KAL {U7}KAL

]
Theorem 6. Assuming an `-data layout, Protocol MP-SW is secure against one
semi-honest adversary.

13

4.2 Finalization step

Finally, there remains to decipher and distribute each row of {C}KA to the
party who has to learn it. By setting the key sequence to KA = (1, 2, 3 . . .)
as in Equation (1), this player is able to perform the decryption himself. This
finalization step is formally described in Protocol 8 and uses N2 communications.

Protocol 8 SW-Finalize
Input: An N×N matrix {C}KC distributed and ciphered according to the location and
key sequences (LC ,KC) ∈ ({1..N}N)2 among parties P1, . . . , PN , following Definition 1.

Output: Each party PKC [i] learns the plaintext of the i-th row of C.

The protocol
1. Exchange rows: For all i ∈ {1..N}, party PLC [i] send row i of C to party PKC [i].
2. Decipher vector: For all i ∈ {1..N}, for all j ∈ {1..N}, party PKC [i] runs

NaccacheSternDecrypt(skKC [i], ({ci,j}KC [i])) and stores the output values in a
vector cKC [i] ∈ ZNσ .

4.3 Cost and security analysis

From Lemma 1 and Theorem 3, the recurrence relation for communication com-
plexity of MP-SW writes:{

C(n) = 7C
(
n
2

)
+ 18

(
n
2

)2
for n > b

C(b) = b3 + 2b2 for the base case
(2)

The threshold at which the recursive algorithm should switch to the base case
algorithm is set by finding at which dimension b does the base case algorithm
start to perform worse than one recursive level. In terms of communication cost,
this means the following equation: 7((b2)3 + 3(b2)2 + 3(b2)) + 18(b2)2 = b3 + 3b2 + b
which comes from injecting the base case cost of Theorem 3 into the recurrence
formula. It gives a threshold of b = 56.

Theorem 7. For N = b2` parties (Pi)i∈{1..N} and two matrices A,B ∈ ZN×Nσ ,
such that party Pi knows the i-th row of A and the i-th row B for all i ∈ {1..N},
the execution in sequence of algorithms (SW-Setup; MP-SW; SW-Finalize), using
the `-recursive data layout of Equation (1), correctly computes C = A×B ∈ Zσ
with O(7`b3) communications in O(`) rounds and is secure against one semi-
honest adversary. When b is constant, then ` = O(log2(N)), and the communi-
cation bound is O(N log2(7)).

Proof. Correctness of MP-SW is given by Theorem 3 for the basecase and that of
Strassen-Winograd algorithm (Section 2.1). Then SW-Setup is just the set up of
the keys and initial encipherings, while SW-Finalize is the associated decipher-
ings. Then, the communication bound stems from Theorem 3 and Equation (2),

14

with 3N2 communications for SW-Setup and SW-Finalize. The non-recursive
parts of each recursive level of MP-SW require a constant number of rounds, and
so does the execution of the BaseCase, leading to a total of O(`) rounds. For
the security. again SW-Setup is just the communication of public keys and self-
ciphered values, while SW-Finalize is also the communication of ciphered values
to their legitimate locations. Finally, Theorem 6 asserts the security of MP-SW
and the sequential execution of (SW-Setup; MP-SW; SW-Finalize) that of the
whole process. ut

We now compare the cost of MP-SW with the cost of MP-PDP, CMP-PDP(n) =
n3+n(n−1). We also recall that the initialization step SW-Setup costs Cinit = 2n2

and the finalization step SW-Finalize costs Cfinal = n2. The crossover point
where our full algorithm improves over MP-PDP in communication cost is obtained
by solving the equation: C(n) + 3n2 ≤ n3 + n(n− 1) which yields n > 94, with
one recursive call. This means that for any instance of dimension larger than 96,
the proposed MP-SW algorithm has a better communication cost than MP-PDP.

5 Experiments

We implemented the algorithms under study6 to demonstrate their behavior in
practice and compared them to the state of the art implementations of other
solutions. In the following SPDZ2k refers to a run of a textbook matrix mul-
tiplication algorithm performed with the general purpose library SPDZ2k [4]7,
YTP-SS refers to n2 applications of [11, Algorithm 15]; MP-PDP refers the relax-
ation and improvement of this algorithm to the current setting; MP-SW refers to
our implementation of Protocol 7 using Protocol 5 as a basecase with threshold
set to n = 56. The Naccache-Stern cryptosystem is set with public keys of size
2048 bits and message space of 224 bits (using 14 primes of 16 bits).

Please note that, while MP-PDP and MP-SW share the same security model,
YTP-SS and SPDZ2k achieve better security: malicious adversaries over insecure
channels. Also, SPDZ2k uses a different approach based on oblivious transfer and
secret sharing. However, as they were the only state of the art implementations
available, we still chose to include them in our comparisons.

Figure 2 presents the volume of communication performed by these four
variants. Note that the cross-over point of n = 96 between MP-PDP and MP-SW is
confirmed experimentally. For SPDZ2k , computations were performed for small
matrices only because of computational power requirements: on a workstation
with 16 GB of RAM and an Intel i5-7300U @2.60GHz, computations stalled for
any matrices larger than 37× 37.

To reach this communication improvement, the price to pay is that of some
computational slowdown, as shown in Table 1

6 C++ source files, including benchmarks for YTP-SS and SPDZ2k , are available on re-
quest via the PC chair and will be made publicly available if the paper is accepted.

7 https://github.com/bristolcrypto/SPDZ-2

15

https://github.com/bristolcrypto/SPDZ-2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50 60 70

C
o
m

m
u
n
ic

a
ti

o
n

v
o
lu

m
e

(G
B

)

Matrix order

SPDZ-2 [4]

YTP-SS [11]

MP-PDP

MP-SW

0
5

10

15
20
25
30
35

40
45
50

0 100 200 300 400 500

Matrix order

SPDZ-2 [4]

YTP-SS [11]

MP-PDP

MP-SW

Fig. 2. Comparing communication volume for multiparty matrix multiplications.

Table 1. Computation time (in s) per player of Multiparty Strassen-Winograd MP-SW

compared to MP-PDP on an Intel Xeon E7-8860 2.2Ghz.

Key size 1024 2048
n 16 32 64 16 32 64

MP-PDP 0.58 2.68 11.01 4.54 18.05 69.80
MP-SW 2.87 6.19 13.27 23.63 49.22 196.24

However, with the same order of magnitude for the computational cost and
the communication cost, communications should be largely dominant. Therefore,
the improvement in communication volume (for instance about 27.8% for n =
528 players between algorithms MP-SW and MP-PDP) is the one that matters.

6 Conclusion and Perspective

We have presented in this paper a novel secure multiparty matrix multiplica-
tion where each player owns one row of the different matrices. For this we use
Strassen-Winograd algorithm and reduce for the first time the total communi-
cation volume from O(N3) to O(N log2(7)). The improvement in communication
cost over state of the art algorithms takes effect for dimension as small as 96.

The version of Strassen-Winograd we presented here is secure against semi-
honest adversaries. However, as many of its building blocks have a stronger
security level anyway, it would be interesting to see if it is possible to increase the
security of the whole MP-SW protocol and how it would impact its performance.

Even if this paper is a about improving the communication cost while pre-
serving security, several arithmetic cost improvements could be envisioned. For
instance, removing the need for players to encrypt their share of the B matrix
beforehand. While this is required in order to preserve security, a large part of
the computing cost lies in the operations required to decipher and re-cipher that
data. In particular, since the MP-COPY protocol nothing more than a straight-

16

forward proxy re-encryption, and we want to further investigate the benefits of
dedicated proxy re-encryption techniques available in this context. Another pos-
sibility would be to replace the Naccache-Stern by a faster cryptosystem. The
difficulty is to be able to combine the masking schemes with the homomorphic
encryption.

17

A Security proofs

A.1 Base case security proof

Theorem 4 (From Section 3.4). If players shares a 0-data-layout, Protocol BaseCase
is secure against one semi-honest adversary.

Proof. We start by proving that both subprotocols MaskAndDecrypt and PointwiseProducts

are secure against one semi-honest adversary.
Protocol MaskAndDecrypt is a 2-party protocol such that:

outputM&D(({b1}P2 , s1),−) = (−,u1), with b1 = bk,∗, s1 = sk, u1 = {uk,j}j∈{1..n}. The
proof is then divided in two parts: one for each corruption case. We labeled P1 the
player providing the seeds as input.

P1 is corrupted: The view of P1 is: viewM&D
P1

= (t1,β1) From the inputs of P1, the
simulator is able to perfectly simulate the view of P1.

P2 is corrupted: The view of P2 is: viewM&D
P2

= (β1) From the output u1 of P2,
the simulator S2 ciphers each of its elements with the key of P2. From the IND-CPA
security, the simulated view is computationally indistinguishable from the real one.

Protocol PointwiseProducts is a 4-parties protocol. However, the 4th player does
not have any input nor output: only its public key is used. In the same vein, P2 only
sends s2 and does not interact otherwise. Its view is empty, so that its simulator is
trivial. Therefore, the proof is only divided in two part. The output of the protocol
is: outputPWP({a1}P4 , s2,uk,−) = (ε,−,−,−) with a1 = ai,k, uk = uk,∗ and ε =
{εi,k,j}j∈{1..n}.

P1 is corrupted: The view of P1 is: viewPWP
P1

= (s2, t1, δ1) The simulator S1 is

the following: picks s′2
$← Zσ computes t′1 as in the protocol. Then, from the output

ε and the input {a1}P4 , it computes δ′ = ε ∗ {a1}t
′
1
P4

component wise. Since the δ
values are ciphered with the key of P4, and that s1 is a random value, both views are
indistinguishable.

P3 is corrupted: We have viewPWP
P3

= ({a1}P4 , δ1) S3: a′1
$← Zσ, then the value is

ciphered with the public key of P4 to obtain {a′1}P4 . Next, it computes δ′1 as in protocol
using the simulated value {a′1}P4 . This simulation is computationally indistinguishable
from the real view thanks to the IND-CPA security of the cryptosystem.

We denote by FM&D (respectively FPWP) the ideal functionalities associated to
the protocol MaskAndDecrypt (resp. PointWiseProduct). If players shares a 0-data-
layout, the BaseCase protocol is secure against one semi-honest adversary in the
(FM&D, FPWP)-hybrid model.

BaseCase is a N -party protocol, where the view depends on which group the
player belongs. Since players share a 0-data-layout, there are four distinct possibili-
ties: {LA,KA, LB ,KB}. The cases where PKA[i] or PLB [i] is corrupted are trivial, since
their respective view are empty in the (FM&D, FPWP)-hybrid model.

PLA[i] is corrupted: The view of PLA[i] is: viewBCPLA[i]
= ({ε}PKA[i]) where εi is the

output of a call to FPWP . The simulator Si executes: for each k ∈ {1..N}: from the
output of the ideal functionality FBC , it picks N−1 random shares in Zσ the (denoted
ε′i, i ∈ {1..N − 1}), and ciphers them using PkKA [i]. Then, it chooses the last share
ε′n such that: ε′n ∗

∏n−1
k=1 ε

′
i. If ε′n belongs to Zm, then it outputs each component of ε′,

otherwise it redoes the process from the beginning for the kth step. The definition of
the data layout assures that PLA[i] 6= PKA[i], so that εi and ε′i are indistinguishable as
long as the encryption scheme is IND-CPA. Moreover, since the choice of each share is

18

consistent with the output of the protocol (i.e., their product is equal to the output),
the adversary is not able to computationally distinguish between the real and the
simulated execution.

PLB [i] is corrupted: The view of PLB [i] is: {viewBCPLB [i]
= (u)}. The output of the

protocol is empty for this player. The simulator picks n random values from Zσ, and
outputs each of them to form u′. In the real world, each ui is masked by a random
value (unknown by PLB [i] since PLB [i] 6= PKB [i]), so that ui and u′i are then perfectly
indistinguishable. ut

Finally, we apply the composition Theorem 1: since we have proven the security of
ΠBC in the (FM&D, FPWP)-hybrid model, and that the protocols ΠM&D and ΠPWP

are secure, and that each call to the both of these protocols are sequentially made,
we conclude that the BaseCase protocol is secure against one semi-honest adversary.
Moreover, the 0-data layout ensures that the seed sharing does not leak information.

A.2 Multiparty Strassen-Winograd security proof

Theorem 6 (From Section 4.1). Assuming an `-data layout, Protocol MP-SW is se-
cure against one semi-honest adversary.

Proof. First, we prove that MP-SW is secure is the FBaseCase, FCopy, F MP-SW
N/2 -hybrid

model, where FBaseCase, FCopy and F MP-SW
N/2 respectively denotes the ideal functionality

associated to the protocol BaseCase, MP-MAT-COPY, and MP-SW with N/2 players.
In this model, calls to MP-MAT-COPY are replaced by ideals calls to FCopy. In the
same vein, if N ≤ T , the MP-SW calls are replaced by FBaseCase, or by F MP-SW

N/2 otherwise.
We need to prove that for any corrupted player, its real view is indistinguishable from
the simulated one. In the following, the inverse notation associated to the data layout
returns the index of associated to the value L[i] or K[i].

From the inputs are as described in MP-SW (implicit in the following), the outputs
for the player PLAX [i]

are the rows of the following matrices, ciphered with PkKAX [i]
,

with X ∈ {U,L}. outputMP-SWAU
(U1, U5) and outputMP−SW

AL
(U6, U7). Using the same nota-

tions, we obtains the following views:
viewMP-SW

LAU
= (S′2, S4, R

′
1, R2, R3, U

′
4),

viewMP-SW
LAL

= (S1, A
′
11, S2, S3, R1, R4, R5, R6, R7, U2, U3, U4),

viewMP-SW
LBU

= (T1, B
′
22, T2, T3, T4), viewMP-SW

LBL
= (−)

We construct a generic simulator, where differences depending on the corrupted
player are explicitly detailed. The simulator Si∈{1..N} takes two random matrices in

α and β both in Z(N∗N)
σ . Then, it replaces the rows for the corrupted player with its

actual inputs (i.e., the rows of A and B owned by the corrupted player). The remaining
coefficients are ciphered accordingly to the data layout. The first part of the protocol
(i.e. the computation of Si and Ti, i ∈ {1..4}) is simulated using the inputs and ideal
calls to FCopy. This simulates the views for the LB cases. Then, there are two cases.

PLAU [i]
is corrupted: From the output, the simulator SLAU [i]

takes N/2 random
values from Zm to obtain the simulation of the row of U4. Then, it computes the row
of R3 = HOM-MAT-SUB(U5, U4). Similarly, it take the row R′1 at random, and computes
R1 = HOM-MAT-SUB(U1, R

′
1).

PLAL[i]
is corrupted: SLAL[i]

samples 3N/2 random values from Zm to simulate

the row of U2, R1 and R7. Next, it computes: R6 = HOM-MAT-SUB(U2, R1), U3 =

19

HOM-MAT-ADD(U2, R7), R4 = HOM-MAT-SUB(U3, U6), R5 = HOM-MAT-SUB(U7, U3 and U4 =
HOM-MAT-ADD(U2, R5).

We now prove that the simulated view is indistinguishable from the real one. The
proof relies on a sequence of hybrid games, where each transition is based on indistin-
guishability.

H0: The first game represents the view of a real protocol execution. in the F MP-SW, FCopy, F MP-SW
N/2 -

hybrid model.
H1: for each call to FCopy, we replace the output of the functionality by random

numbers, accordingly ciphered with the data layout. i.e.: ∀j ∈ {1..N}, ri
$← Zσ and

{rj}KX [j] withX ∈ {AL, BU}. Since only one player is corrupted, and (LA,KA, LB ,KB)
is a l-recursive data layout which verifies (LXU ∪KXU)∩(LXL∪KXL) = ∅, X ∈ {A,B},
then the player obtains ciphers which it cannot decipher. Then, the IND-CPA security
of the cryptosystem ensures that H0 and H1 are indistinguishable.

H2: In this game, we replace the output obtained from: FBC) if N ≤ T ; F MP-SW

with N/2 players otherwise; by the previously detailed simulation for the Ri, i ∈
{1..N}. From the data layout, the corrupted player (PLAU [i]

or PLAL[i]
) in the real case

gets undecipherable values that cannot be guessed from the inputs of the adversary
(which knows one row of each matrix in the worst case) so that the simulation is

computationally indistinguishable. Then, H1
C≡ H ′2.

H3: In this game, we replace the Ui of the real view with the simulated ones
Ui, i ∈ {2..4}. Each of the simulated values is directly computed from the output,
so that as long as the adversary is not able to distinguish ciphers, the simulation is
computationally indistinguishable from the real execution.

H3 represents the simulated view for N players. We have then proven that MP-SW

is secure against one semi-honest adversary in the FCopy, FBC-model.
Second, we prove that if we assume a l-data layout between the players, the MP-SW

protocol is secure against one semi-honest adversary under a sequential composition of
the sub-protocols MP-MAT-COPY and BaseCase. By induction, we suppose that the
protocol MP-SW is secure with N/2 players, and we show that the protocol MP-SW for N
players.

Base Case : N ≤ T . In this case, MP-SW is replaced by the BaseCase protocol. By
construction, the data layout is now 0-recursive. Then, the corrupted player cannot act
as more than one player in the execution, so that the security of the protocol against
one-semi honest is enough.

Induction : N > T . In this case, each call to the MP-SW protocol is assumed secure
from the induction hypothesis. Then, each of these calls can be realized sequentially.

Then, since all sub-protocols calls can be realized sequentially, and since we have
proven that MP-SW is secure in the F MP-SW, FCopy, F MP-SW

N/2 -hybrid model, the sequential
composition theorem ensures that the protocol obtained by composition is also secure.
Henceforth, by induction, we have proven that from F MP-SW

N/2 , we are able to construct
a secure execution of MP-SW. In conclusion, the protocol MP-SW is secure against one
semi-honest adversary. ut

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. 1974.

2. B. Boyer and J.-G. Dumas. Matrix multiplication over word-size modular rings
using approximate formulas. ACM Trans. Math. Softw., 2016.

20

3. R. Cramer, I. B. Damg̊ard, and J. B. Nielsen. Secure Multiparty Computation and
Secret Sharing. 2015.

4. R. Cramer, I. Damg̊ard, D. Escudero, P. Scholl, and C. Xing. SPDZ2k : Efficient
mpc mod 2k for dishonest majority. In Advances in Cryptology - CRYPTO 2018.

5. Ö. Dagdelen and D. Venturi. A multiparty protocol for privacy-preserving coop-
erative linear systems of equations. In BalkanCryptSec 2014.

6. I. Damg̊ard, J. B. Nielsen, M. Nielsen, and S. Ranellucci. The tinytable protocol
for 2-party secure computation, or: Gate-scrambling revisited. In CRYPTO 2017.

7. D. Demmler, T. Schneider, and M. Zohner. ABY - A framework for efficient mixed-
protocol secure two-party computation. In NDSS 2015.

8. W. Du and Z. Zhan. A practical approach to solve secure multiparty computation
problems. In NSPW’02, 2002.

9. J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear algebra over word-size prime
fields: The FFLAS and FFPACK packages. ACM Trans. Math. Softw., 2008.

10. J.-G. Dumas and H. Hossayni. Matrix powers algorithms for trust evaluation in
public-key infrastructures. In A. Jøsang, P. Samarati, and M. Petrocchi, editors,
Security and Trust Management, 2013.

11. J.-G. Dumas, P. Lafourcade, J.-B. Orfila, and M. Puys. Dual protocols for private
multiparty matrix multiplication and trust computations. Computers & Security,
2017.

12. A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Zahur, and
D. Evans. Privacy-preserving distributed linear regression on high-dimensional
data. Proceedings on Privacy Enhancing Technologies, 2017.

13. B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen. On private scalar product
computation for privacy-preserving data mining. In C.-s. Park and S. Chee, editors,
ICISC 2004.

14. O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. 2004.
15. Y. Ishai, M. Mittal, and R. Ostrovsky. On the message complexity of secure

multiparty computation. In PKC 2018.
16. S. Jarecki. Efficient covert two-party computation. In PKC 2018.
17. A. Josang. Probabilistic logic under uncertainty. In 13th Computing: Australasian

Theory Symposium (CATS2007), 2007.
18. B. Kaliski and J. Staddon. RSA Cryptography Specifications (PKCS #1). RFC

2437, 1998.
19. I. Kaporin. A practical algorithm for faster matrix multiplication. In Numerical

Linear Algebra with Applications, 1999.
20. E. Karstadt and O. Schwartz. Matrix multiplication, a little faster. SPAA ’17.
21. F. Le Gall. Powers of tensors and fast matrix multiplication. ISSAC ’14.
22. Y. Lindell. How to simulate it – a tutorial on the simulation proof technique, 2017.
23. P. K. Mishra, D. Rathee, D. H. Duong, and M. Yasuda. Fast secure matrix mul-

tiplications over ring-based homomorphic encryption. Cryptology ePrint Archive,
Report 2018/663, 2018.

24. D. Naccache and J. Stern. A new public key cryptosystem based on higher residues.
CCS ’98, 1998.

25. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In EUROCRYPT ’99, 1999.

26. P. Rindal and M. Rosulek. Faster malicious 2-party secure computation with
online/offline dual execution. In USENIX Security Symposium, 2016.

27. A. Shamir. How to share a secret. Comm. ACM, 1979.
28. V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 1969.

21

	Secure Multiparty Matrix Multiplication Based on Strassen-Winograd Algorithm

