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Abstract—We are seeing an increase in cybersecurity attacks
on resource-constrained systems such as the Internet of
Things (IoT) and Industrial IoT (I-IoT) devices. Recently,
a new category of attacks has emerged called microarchitec-
tural attacks. It targets hardware units of the system such
as the processor or memory and is often complicated if
not impossible to remediate since it imposes modifying the
hardware. In default of remediation, some solutions propose
to detect these attacks. Yet, most of them are not suitable for
embedded systems since they are based on complex machine
learning algorithms.

In this paper, we propose an edge-computing security
solution for attack detection that uses a local-remote machine
learning implementation to find an equilibrium between
accuracy and decision-making latency while addressing the
memory, performance, and communication bandwidth con-
straints of resource-constrained systems. We demonstrate
effectiveness in the detection of multiple microarchitectural
attacks such as Rowhammer or cache attacks on an embed-
ded device with an accuracy of 98.75% and a FPR near
0%. To limit the overhead on the communication bus, the
proposed solution allows to locally classify as trusted 99%
of the samples during normal operation and thus filtering
them out.

Index Terms—IoT, Security, HPCs, Edge-Computing, Local-
Remote Detection, Microarchitectural Attacks

1. Introduction

In recent years, we have observed an increasing num-
ber of Internet of Things (IoT) and Industrial IoT (I-IoT)
devices. Millions of these devices are placed in critical
locations and collect data that are later processed to make
appropriate decisions and take actions. However, despite
their use in critical applications (such as health, transport
or smart cities), IoT devices often lack security guarantees
and security support.

In parallel to malware such as cryptolockers, worms
or Trojans, a new class of attacks has emerged that we
refer to as microarchitectural attacks. Microarchitectural
attacks include attacks such as Cache Side-Channel At-
tacks (CacheSCA) [10], Rowhammer [9], Spectre [17],
and Meltdown [21] and target hardware units such as the
processor or the memory. One major threat of these attacks
is the complexity required to remediate them that often
imposes the modification of the component itself or an
important overhead on the performances. Thus, in default

of remediation, some solutions based on the detection
of these attacks were presented in the state of the art
to circumvent this problem. Yet, most of them are not
suitable for embedded systems. These solutions are based
on a complex machine learning algorithm that does not
fit in a little processor or solutions that create a huge
overhead on the communication bus. In such systems,
performance, memory, energy consumption, and commu-
nication bandwidth play an important role in adopting a
security solution to detect microarchitectural attacks.

Since microarchitectural attacks directly exploit hard-
ware, some works [11], [24], [34], [28] rely on Hardware
Performance Counters (HPCs) to detect these attacks.
HPCs are special core registers found in most modern
processors. They enable the measurement of hardware-
specific events with near-zero overhead for the CPU.
Proposed detection solutions extract and analyze HPCs
to characterize the behavior of a program using machine
learning (ML). Despite the large number of published
security solutions using the HPC-ML configuration, most
of them are not suitable for IoT devices due to their high
overhead induced by complex ML algorithms.

While we aim for a high attack detection rate, we also
need to consider a minimum False Positive Rate (FPR,
that is, avoiding false alarms during normal execution of
the system). Due to the criticality of some IoT systems
(health, industry, transport, etc.), they will implement
response mechanisms to prevent damage to human or
environment. Thus, undetected attacks may damage the
system or extract sensitive data. However, frequently
triggering response mechanisms due to a false alarm
(such as a system recovery) would result in the device
not operating properly. Though, a high FPR can also
increase system overheads. Furthermore, as IoT devices
often extract and transmit data to a remote server, the
required bandwidth is a critical parameter for their normal
operation.

Related works: In the literature we find two main im-
plementation approaches: local and remote. The first ap-
proach implements the security mechanism locally within
devices, either in software or hardware. This approach
allows fast detection and reduces communication and
memory overhead of storing and transmitting the HPC
measurements remotely later. On the downside, this ap-
proach increases the performance overhead since we must
extract system information and deploy the ML to decide
for the presence or not of an attack. Simple ML models
such as Logistic Regression (LR), Decision Trees (DT)
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etc., can reduce the induced overheads. However, due to
their simplicity, they have limited learning capacity which
can result in low accuracy i.e., either a high detection
rate and an increased FPR, or a low detection rate and a
low FPR. This is why complex ML implementations are
preferred.

To reduce the FPR while having a high detection rate,
in [24] the authors use ensemble ML. In an ensemble
ML, two or more ML algorithms are used, while the final
decision is made by a majority vote. The drawback of
this solution is the bigger performance overhead (8%) of
using multiple ML algorithms in combination and using
one specific model per attack vector. In another work [11],
the authors propose Long Short-Term Memory networks
(LSTM) for detection of microarchitectural attacks in
desktop and server environments. They use the LSTM to
learn the behavior of the system during normal operation,
which enables them to detect any deviation from it as
malicious. They manage to detect attacks with 99.70%
F-score, 0.125% FPR and 3.5% performance overhead.
However, LSTMs are resource-intensive MLs, and while a
3.5% performance overhead is not high for server or desk-
top environments, it can pose limitations when deployed
in an IoT device, as resources are limited. Decreasing
the frequency of HPC extraction and ML deployment can
reduce the overheads, but as shown in [28], in this case
the ML algorithms might be vulnerable to evasive attacks,
i.e., attacks whose behavior is modified in a way that the
extracted HPCs are closer to the normal behavior.

The second approach implements the security mech-
anism in a remote system such as a cloud server. This
approach reduces the performance overhead of the local
implementation of the detection mechanism, since it only
needs to periodically extract HPCs, but significantly in-
creases the memory and communication overhead since
we must store this extracted information before transmit-
ting them to a remote server. In [13], the authors use
LSTM and Conditional Restricted Boltzmann Machine
(CRBM) in a remote system. They succeed in detecting
attacks with 99.97% accuracy and have an FPR of 0.5%.
In [18], the authors use a one-class SVM and detect
attacks with the accuracy of 100%. Both implementations
extract HPC data every 1 ms, which significantly increases
communication overhead. Considering the hundreds of
other edge devices transmitting all of their extracted in-
formation, these solutions might lead to exceeding the
network capacity, which can result in slowdowns and
unavailability.

Both approaches seek to minimize some overheads
at the expense of others. On the other hand, we find a
promising approach [34] for resource-constrained systems.
In [34], authors use information from the HPCs in com-
bination with a remote implementation of ML, to avoid
overheads in the local system. They also try to reduce
the communication overhead of sending all extracted HPC
samples by sending only a compressed version. However,
authors found that increasing the compression rate reduces
the accuracy. A compression rate of 20% and 30% showed
the best detection rate. Yet, their idea is limited in that
it relies on signature checking, which attack authors can
avoid [8]. Also, they rely on matrix multiplication for
local data compression, which tends to increase execution
overhead exponentially with the size of the data being

compressed and linearly with the compression rate. The
authors measure the performance overhead to be more
than 5% at a compression rate of 30%.

From the works cited above, we observe that
the use of complex ML models is preferred, due to
their ability to provide a high detection rate, while
minimizing the FPR. On the downside, implementing
these solutions locally induces an increased performance
overhead, which might be restrictive for IoT devices.
While, remote implementations resolve the performance
overhead issue but the required bandwidth required to
periodically transmit all the extracted information should
be optimized, otherwise it could lead to network issues.
Also, they will be totally ineffective if the network is
down.

Contributions: We propose an HPC-based mecha-
nism allowing the detection of microarchitectural attacks
and compliant with resource-limited devices. This solution
is based on a local-remote approach, featuring a simple
ML classifier locally to the device, alongside complex
and resource-heavy ML located in a remote cloud. The
local ML will first try to decide how likely a behavior
is suspicious and send the samples to the cloud only if
necessary for further analysis.

This solution is based on edge computing concepts
and takes advantage of both local and remote approaches
to accurately detect attacks, targeting a 0% FPR without
imposing large overhead on the local system while mini-
mizing bandwidth. This target of 0% FPR is introduced by
the likelihood of automatic fallback mechanisms in critical
IoT devices that will disrupt physical processes (e.g.,
health monitoring, power distribution, etc.) and which
should only be triggered for good reasons. Hence, our
contributions are the following:

• We propose the first HPC-based local-remote ML
mechanism to detect microarchitectural attacks in
resource-limited devices. To decide when to send a
sample to the remote ML, we implement a two-level
detection threshold scheme.

• We evaluate and compare ML algorithm implemen-
tations in local, remote, and local-remote systems.
We evaluate our solution against microarchitectural
attacks and compare it to related works.

• Finally, we propose and evaluate a near zero false
positive rate strategy (FP) based on an Isolation
Forest algorithm used in combination with the local-
remote implementation. This strategy allows us to
obtain a 10−5% FPR.

Outline: The remainder of the paper is organized as
follows. In Section 2, we introduce our local-remote ML
mechanism allowing the detection of microarchitectural
attacks and analyze it in detail. Then, in Section 3, we
compare ML algorithms implemented locally, remotely,
and finally the local-remote implementation. In Section 4,
we adapt the approach of [30] to the needs of our proposed
idea and successfully further reduce the FPR. Section 5
talks about the comparison between our solution with
related works and Section 6 discusses the limitations of
our solution. Finally, Section 7 summarizes our work and
concludes.



Figure 1. Global overview of the proposed solution.

2. Proposed solution

We propose a solution that uses edge computing tech-
niques to detect microarchitectural attacks in constrained
devices such as IoT and decrease the use of the commu-
nication bandwidth. The global architecture is represented
in Figure 1 and describes a first level of detection on the
local IoT devices and a second on a remote server. The
edge device pre-processes the extracted HPC data to filter
out the ones with low value of maliciousness, i.e., the
normal HPC measurements. To be somewhat independent
of a remote security solution, the tiny ML can raise an
alarm when it is convinced that an attack is being carried
out. This is useful in cases where the network is down and
no connection to the remote solution is possible. HPC
values that cannot easily be labeled either as malicious
or trusted are transmitted to a remote server for further
analysis. In this case, a complex ML can accurately detect
malicious activities. The proposed idea allows us to move
parts of the storage and processing resources away from
the remote center and closer to the local device. This idea
overcomes many limitations of traditional cloud comput-
ing such as latency, service delays, network outages, and
reliability.

2.1. Local ML implementation

In each edge device, the local ML algorithm which
processes the HPC values can be supervised or unsuper-
vised. It reads the HPC samples and outputs a probability
between 0% and 100% for each sample to be a microar-
chitectural attack. We refer as a sample, a snapshot of
the values of the selected HPCs. The implementation,
as shown in Figure 2, allows us to trust samples with
a low probability of an attack. It sends samples with
an intermediate probability to a remote ML for further
evaluation and raises an alert if there are samples with a
high attack probability. This is achieved by setting two
thresholds.

The first threshold (alert threshold) acts as a trigger for
detecting samples that have a high probability of being a
microarchitectural attack. We choose the alert threshold

Figure 2. Two-level detection threshold implementation.

based on the maximum probability obtained using the
local ML for only normal training samples, plus an extra
offset. This offset acts as an uncertainty level. By choosing
the alert threshold as this, we are more certain that during
evaluation the local ML will not raise false alerts.

The second threshold (suspicious threshold) is set to
allow the samples that our local ML cannot identify with
high confidence to be stored and later sent to the remote
ML for further processing. MLs from related work use
a probability of 50% to classify samples as malicious
or normal. To compute the optimal suspicious threshold,
we iteratively try different thresholds and compute the
Gmean, as shown in (1). We then keep as suspicious
threshold the one yielding the maximum Gmean. Gmean is
a metric that tries to find an equilibrium between FPR and
True Positive Rate (TPR). Essentially, Gmean will give us
the probability threshold that allows us to filter as many
normal samples as possible, while also maximizing the
suspicious samples to raise an alert locally or sent them
to the remote for further evaluation.

Gmean =
√

TPR ∗ (1− FPR) (1)

Subtracting an offset allows the local ML to label
samples as suspicious a bit more loosely. This will allow
sending malicious samples with behavior closer to normal
to the remote ML. The trade-off being that more normal
traffic will also be sent for remote analysis.



Figure 3. Testbed used to identify best features.

2.2. Remote ML implementation

Suspicious samples are stored locally then sent to a
remote ML for further analysis. The local system sends
suspicious samples every ∆s to the remote system. This
value is chosen empirically and more analyses will be
required to evaluate its optimum. The remote ML is
based on a complex ML, which is capable of learning
complicated behaviors. It can be either a supervised or an
unsupervised ML implementation. An unsupervised ML
implementation, such as an LSTM, learns only normal
behavior and detects any behavior that deviates signifi-
cantly from the patterns our ML mechanism is trained to
identify as a normal behavior. Using MLs that learn only
from normal behavior, we can potentially detect zero-day
attacks by hypothesizing that they deviate from normal
behavior and that the local ML succeeds in labeling them
as suspicious.

The remote system examines suspicious samples
it receives from the local system for differences from
normal behavior and flags them as abnormal if they
deviate and notifies the local system. Examples of
such complex MLs are Autoencoders, one-class SVM,
and LSTM networks. LSTM is a network that uses
information from past samples to make predictions for
current or future samples. Thus, if a remote LSTM ML
is used, the additional information about the past HPC
samples increases the data sent to the remote.

Benefits of a local-remote approach: Local filtering
allows us to reduce the memory requirements for local
storage of the extracted samples while minimizing the
communication and network overhead for transmitting the
samples to the remote system each ∆s. Using this local-
remote approach, we can filter most of the extracted data
under normal operation, while only transmitting remotely
data under attack. In the following sections, we evaluate
various local-remote implementations and present their
overhead and detection capabilities.

3. Solution evaluation

In this section, we evaluate various local or remote ML
models individually and their combination using several
detection metrics. We also evaluate the overheads incurred
in the local system and the data successfully filtered.
Section 3.1 will introduce our experimental platform and

the choice of HPC we use for monitoring. Section 3.2
will present our experimental results, justifying our final
choice of ML algorithms. In Section 3.3, we evaluate the
filtering followed by the two-level threshold approach and
finally, in Section 3.4, we optimize the memory required
to save the extracted HPC data labeled suspicious.

3.1. Experimental platform

Our experimental platform featured in Figure 3 is
based on a Raspberry Pi4 Model B running on Ubuntu
20.04.2 LTS. Its processor is widely used in embedded
devices with high resources requirements such as I-IoT
gateways and has four ARM Cortex-A72 cores running
at 1.5 GHz. Each core of the processor provides 84
HPCs and enables the extraction of measurements from
six registers simultaneously. As proposed in [28], we
extract measurements from the HPC registers each 1 ms
to be able to detect cache attacks integrating eviction
techniques. A dedicated kernel module mainly based on
an assembly code was used to extract the samples to limit
the performance overhead.

To demonstrate our idea, we use several microarchi-
tectural attacks as test vectors. These include CacheSCA
variants, Spectre variants, Meltdown, and Rowhammer.
Also, we include obfuscated (evasive) variants as sug-
gested in [28] by inserting nop or sleep instructions in
the attack code to hide malicious activity. Most of these
attacks are publicly available from Github [25], [36], [15],
[26], [6], [31], [5] and modified to be able to run on
the targeted processor. For our benign applications, we
use MiBench [12] and PARSEC [3], which are industry
standard embedded system benchmarks that cover a wide
range of applications. Our library contains 29 attacks and
72 normal applications.

As the number of events that can be measured simul-
taneously is limited to six on our experimental platform, it
is essential to select the optimal subset of HPC registers
to monitor in order to obtain the best detection results.
There are different ways to identify the best suitable HPC
registers:

• A first solution is to use HPC registers related to
different hardware units of the processors: cache
memory, bus, TLB, etc.

• A second solution is to use generic HPC registers,
that is to say, events that are implemented in most of
the CPU cores (Intel, AMD, ARM, RISC-V).



• Feature extraction methods such as Pearson correla-
tion [1] or Mutual Information [20] are mathemati-
cal methods to calculate the amount of information
provided by a hardware event in order to detect or
classify data.

• A theoretical study was proposed in the review [27]
to present the most interesting events to detect mi-
croarchitectural attacks.

Finally, we selected six HPC events using Mutual
Information method. This requires the extraction of all
available HPCs in the ARM cortex-A72 processor core
during the execution of normal and malicious applications.
The experimental setup described in Figure 3 was used
to extract these measurements. The methodology can be
divided in multiple steps:

• Step 1: Configuration of the extraction of the HPC
events and the monitoring interval.

• Step 2: Execution of benign and malicious applica-
tions.

• Step 3: Extraction of the raw traces of HPC values
from a computer.

• Step 4: Use of Mutual Information method to eval-
uate and identify the 6 best HPCs events.

The top six features we obtained with this methodol-
ogy for microarchitectural attacks detection in the context
of IoT are the following:

• ISB_SPEC: This event counts each instruction bar-
rier speculatively executed.

• L1D_TLB_REFILL: This event counts any L1 data
TLB refill.

• BR_IMMED_SPEC: This event counts each branch
speculatively executed.

• L2D_CACHE_REFILL: This event counts any L2
unified cache refill

• BR_MIS_PRED: This event counts any branch
which is not correctly predicted.

• MEM_ACCESS_LD: This event counts memory
accesses due to load instructions

3.2. Evaluation of different ML algorithms

For the training of the ML algorithms? we used a
70/30 random split of the different applications. Since
some applications have a longer execution time than oth-
ers, we used time-series data augmentation techniques
as proposed in [14] to balance the number of samples
between each application, either by upsampling or down-
sampling. Such techniques are time warping, magnitude
warping, window warping, scaling, and window slicing.
After augmenting our dataset? we use 20% of the training
data for validation using stratified sampling [37].

As a first step, we identify how each ML algorithm
performs on our classification problem. Our motivation
for evaluating the performance of each ML classifier is
to show that simple local MLs are capable of identifying
malicious samples but have a high FPR. This allows us
to demonstrate the need to use complex MLs that have a
lower FPR, and finally the advantages of a local-remote
ML solution. We selected two local ML classifiers for
testing: (i) Linear SVC (LSVC), and (ii) AdaBoost using
five Logistic Regression classifiers. We also select two

remote ML classifiers: (i) LSTM, and (ii) LSTM Autoen-
coder (LSTMAE) with each of them using the seven past
samples to predict the current one. For the evaluation, we
use the following metrics: TPR (or detection rate), and
FPR. TPR is a metric that measures how well we identify
True Positives (TP) and FPR is the percentage of negative
samples falsely classified as positive relative to the total
number of negative samples. We pay significant attention
to FPR because we argue that low FPR is as important as
high TPR for resource-limited and critical devices.

TABLE 1. CLASSIFICATION METRICS FOR THE DIFFERENT ML
ALGORITHMS SIMPLE (LINEARSVC & ADABOOST) AND MORE

COMPLEX (LSTM7 & LSTM AUTOENCODER7).

Single Level
Threshold

TPR FPR

LinearSVC 99.75% 1.63%
AdaBoost

(Logistic Regression)
99.70% 0.68%

LSTM7 72.99% 0.03%
LSTM+

AutoEncoder7
92.41% 0.45%

In Table 1, we display results according to the different
classification metrics for each of the classifiers. These
results for the simple MLs are obtained by using as the
classification threshold, the 50% probability of a sample
being a microarchitectural attack as in other state-of-the-
art works. For the complex MLs, we use as the classifica-
tion threshold, the quantile (99.85%) of the distribution of
the mean square of the reconstruction errors of the normal
training dataset as in [29].

Local MLs have a high TPR (∼ 99.70%) but also a
high FPR (0.68% and 1.63%) while the more complex
MLs have lower FPR (0.03% and 0.45%) than the simple
MLs. The lower TPR of the complex ML is caused by
the simple MLs using classification, able to learn patterns
from the input and knowing the final label, while the com-
plex perform anomaly detection and detect as malicious
any input that greatly deviates from the normal dataset.
This is also why remote MLs have lower FPR, since they
are trained only with normal data, which helps them to
recognize most normal samples. Yet, having a 0.5% FPR
means that 5 samples out of 1000 would be erroneously
detected as malicious. With a sampling rate of 1 ms, this
would potentially mean 5 false alarms every 1 seconds.

TABLE 2. CLASSIFICATION METRICS FOR THE LOCAL-REMOTE.

Two Level
Threshold

TPR FPR

AdaBoost + LSTM7 73.09% 0.02%
AdaBoost +

LSTM AutoEncoder7
92.66% 0.13%

In Table 2, we observe how the combination of
the simple local ML with the more complex remote
ML responds to this classification problem. As we can
see, the TPR remains high (92.66%) and the FPR low
(0.13%) when using the combination of AdaBoost and
LSTM AutoEncoder7 algorithms.



Figure 4. Data stored to the local memory per second (red dotted line) and sent to the remote ML for further evaluation each ∆s 1 minute (purple
triangles). The shaded areas indicate the period where the system is under attack.

Benefits of a local-remote approach: First minimiz-
ing the FPR is desirable since one FP is enough to label
a whole application as malicious. As stated in Section 1,
frequently taking actions due to an alarm during normal
operation can make the device unusable. Furthermore, the
TPR remains high, which allows us to capture as much
malicious activity as possible and only need one timing
window with high anomaly score to detect a malicious
app. The TPR is lower than the simple single-level thresh-
old MLs, since the local part of the local-remote only
raises alerts for high probability samples and transmits
the suspicious for further evaluation in the remote. Also,
attacks do not execute only malicious actions in their
whole execution, and the remote ML will recognize such
parts as normal, and not as attacks as indicated in our
labeling effectively lowering the TPR.

3.3. Edge-device Local ML filtering

In this section we evaluate the filtering succeeded by
the two-level threshold approach. We focus on the filtering
succeeded during normal operation only, since this is the
state of the device in most of its operation and we do not
want to overflow the communication interface with limited
value data under this condition. From Table 3 we can
observe the filtering succeeded under normal operation,
when the local ML is configured as AdaBoost (same
case as in Table 2), monitoring the system each 1 ms,
monitoring six 4 bytes HPC counters per core, and 4 cores
in total, while transmitting the data to the remote each 1
minute. The total size of data extracted from the system
per minute of execution is 5760kB.

TABLE 3. DATA SEND PER MINUTE UNDER NORMAL OPERATION
AND PERCENTAGE OF FILTERING WHEN 5760KB OF HPC DATA ARE

EXTRACTED PER MINUTE.

Local ML
(filtering only)

Number of bytes send
per minute

filtering
percentage

AdaBoost
(Logistic Regression)

39kB 99.32%

Benefits of a local-remote approach: From Table 3,
we can see that our approach can successfully filter more
than 99% of the extracted HPC data under normal opera-
tion. This is due to the local ML being very successful to
label as normal benign applications (keeping them under
the suspicious threshold). This allows us to dramatically
reduce the bandwidth required under normal operation
where solutions containing only a remote ML will send
all samples to the cloud.

3.4. Memory & Detection Time Optimization

In this subsection we optimize the memory required to
save the extracted HPC data labeled suspicious. Further-
more, we optimize the detection time, since under attack
we would like to detect the attacks before the specified
∆s = 1 minute and further waiting for the remote ML
to give us the final decisions. To succeed with the above,
we make the two following observations from Figure 4
and Figure 5:

• Under only normal operation the saved suspicious
data does not exceed a certain value, which in this
case as seen in Figure 5 is not more than 50KB.

• When an attack executes on the system, the rate of
saving suspicious data in local storage increases. We
can observe that in Figure 4 in periods 2-3, 5-6, 8-9.

Figure 5. Data stored to the local memory per second (red dotted line)
and sent to the remote ML for further evaluation each ∆s 1 minute
(purple triangles) under normal operation.



So to optimize the memory required and the detection
time, we set the size of the local storage to the calculated
maximum amount of data saved and transmitted under
normal operation, so under normal operation we do not
exceed this size. For AdaBoost this is 54 kB. If under
attack, we require more memory to save the extracted HPC
samples, and rather than saving more data and as soon as
the memory is full, we send the data directly to the remote
to have a quicker detection time. As mentioned in the
previous observations, under attack the rate of suspicious
data saved is greater than under normal operation, which
most probably will overflow the local storage.

This implementation choice allows us to only specify
the necessary memory for local storage, rather than using
a 5760 KB memory, and also under attack we transmit the
data faster in most cases than waiting the specified ∆s.

4. False Positive Minimization Using an Iso-
lation Forest

In the previous section, we successfully reduced the
required communication bandwidth and optimized the
memory and detection time. But, as observed from Ta-
ble 2, the FPR of the local-remote might be lower than
both complex and single MLs used individually, but it can
still be minimized to avoid unnecessary false alarms. To
minimize the FPR, we adapt a solution proposed by [30]
as can be seen in Figure 6. Sadaf et al. use an Isolation
Forest [22] to optimize their classification metrics. An
Isolation Forest is a technique to detect/find outliers in
a set of data as the samples that greatly differ from
others. In their implementation as seen in Figure 6, the
input samples are predicted by a ML. As their ML is
not perfect, it has some FPs and some FNs. In their
hypothesis, FPs are outliers among the rest of the TPs
and FNs are outliers among the majority of TNs. By using
then an Isolation Forest in the positives, they can find the
FPs and change their final label to negative increasing the
correct predictions and classification metrics.

Figure 6. Isolation Forest used by Sadaf et al. [30] to increase classifi-
cation metrics.

In our case to minimize the FPR, we adapt their
approach by also using the memory and detection time
optimization presented before in Section 3.4. To do this
we make the following hypotheses:

• If the remote ML received the data before the ex-
pected ∆s, we trust its decisions since this most
probably happened due to the execution of an attack.

• If the remote ML received data at the expected ∆s,
we can expect to be under normal operation and
must be careful for FPs. Thus, we double-check the
remotes ML positive decisions using an Isolation
Forest.

Figure 7. Isolation Forest technique used by Sadaf et al. adapted for our
approach.

In Figure 7, we can see both our pseudo-algorithm and
our technique to adapt the approach proposed by Sadaf et
al. When the remote received the data as expected at ∆s,
for each remote ML positive decision, we also check if the
suspicious samples are inliers or outliers in the Isolation
Forest. If the Isolation Forest indicates that the sample is
an inlier, i.e., it predicts that it is similar with a large pool
of normal samples used for the remote ML training, then
we reset the decision to negative, otherwise we notify the
embedded device of the presence of an attack. As we can
see from Table 4, the use of the Isolation Forest to double-
check remote ML’s decisions, can successfully reduce the
FPR to 10−5% compared to 0.13% when not using it.

TABLE 4. CLASSIFICATION METRICS FOR THE LOCAL-REMOTE ML
with and without THE ISOLATION FOREST FOR FP REDUCTION.

Two Level
Threshold

TPR FPR

AdaBoost +
LSTM AutoEncoder7

92.66% 0.13%

AdaBoost +
LSTM AutoEncoder7

+ Isolation Forest
92.66% ∼ 0%

5. State-of-the-Art Comparison

Table 5 presents how our work compares to other
approaches in the SOTA. This is not a comparison on the
same dataset, since we use different attack vectors and
normal libraries, in addition to the different experimental
platform, but it shows the contributions of our approach
as all articles try to detect the same microarchitectural



TABLE 5. COMPARISON OF OUR LOCAL-REMOTE IMPLEMENTATION TO THE RELATED WORKS.

Detection
Mechanism

Attacks Accuracy F-score
FPR or

Precision
Overhead System

Local
or

Remote

Mushtaq et al. [23]
Logistic Regression

(No Load)
Flush+Reload 99.51%

0.48%
FPR

0.94% Local

Mushtaq et al. [23]
SVM (No Load)

Flush+Reload 98.82%
0.397%

FPR
1.29% Local

Mushtaq et al. [23]
Logistic Regression

(No Load)
Flush+Flush 91.73%

0%
FPR

1.10% Local

Mushtaq et al. [23]
SVM (No Load)

Flush+Flush 97.42%
0%
FPR

0.79% Local

WHISPER [24]
Ensemble Learning

One model per attack
(DT, RF and SVM)

(No Load)

CacheCSA,
(F+F, F+R, P+P),
Spectre, Meltdown

>97.05% <8% Local

FortuneTeller
[11] LSTM

Spectre, CacheCSA,
(F+F, F+R, P+P),

Meltdown, Rowhammer
99.70%

0.125%
FPR

3.50% Local

Wei et al. [35]
OC-SVM

Prime + Probe,
Spectre, Rowhammer,

Evasive
<98.63%

<0.5%
FPR

Wei et al. [35]
LSTM

Prime + Probe,
Spectre, Rowhammer,

Evasive
<99.06%

<0.5%
FPR

Kuruvila et al. [19]
Random Forest

Flush + Flush, PNScan,
Spectre, Meltdown,

Rowhammer, BashLite
89.90% 89.91%

89.25%
Precision

<1.22% Local

Wang et al. [33]
MPL

CacheCSA,
(F+F, F+R, P+P),

Spectre
<98.9% <97%

5.3%
FPR

<3.2%

Wang et al. [33]
Logistic Regression

CacheCSA,
(F+F, F+R, P+P),

Spectre
<98,9% 91.90%

14.9%
FPR

<3.23%

Ours
AdaBoost +

LSTM AutoEncoder7

Spectre, Rowhammer,
CacheCSA

(F+F, F+R, E+R, P+P),
Meltdown, Evasive

98.75% 96.19%
10−5%

FPR
0.80%

Local
Remote

attacks. As we can see from the table, when the threat
model has limited attack vectors (as in rows 1-4), simple
ML models such as Logistic Regression can succeed in
detecting the attacks with high accuracy and low FPR.
When the threat model has more attack vectors (rows 5-
), then more complex MLs are used, such as ensemble
ML and LSTM, which keep the accuracy high, while
minimizing the FPR. On the downside, we can observe
that WHISPER [24] has an overhead of 8%, and For-
tuneTeller an overhead of 3.5%. These overheads might
not be significant in the targeted desktop/server systems,
but using these solutions on an embedded device could
be challenging. Wei et al. [35], Kuruvila et al. [19], and
Wang et al. [33] propose solutions for embedded systems.
While Wei et al. succeed having high accuracy and low

FPR, they use an LSTM, which is a resource demanding
ML algorithm, and it could be challenging fitting it in a
resource-limited system. On the other hand, Kuruvila et al
and Wang et al. use simpler MLs to reduce the overheads
imposed on the embedded device, but as we see from the
table the FPR is high (or precision is low). In comparison,
our solution succeeds in keeping the detection accuracy
high (98.75%), having minimal FPR (∼ 0%) and imposing
a minimal overhead (0.8%) on the edge-device.

Finally, compared to the solution proposed by [34],
which was able to compress the extracted data by 20-
30% while keeping the overhead around 5%, we see that
our solution can filter up to 99% while the overhead is
less than 1%.



6. Discussion

In this section we discuss some implications of our
findings and limitations of our approach and propose
some ideas to improve future solutions.

Overhead in more constrained devices: In Section 5
and more precisely in Table 5, we mentioned that the
overhead imposed by our solution in the Raspberry PI4
is less than 1%. However, this kind of platform has high
computation resources and is considered as a complex
IoT device. To validate that our proposed solution can
be integrated in more resources-constrained devices,
more experiments should be performed to evaluate the
overhead induced by HPC monitoring with tiny ML.

Non-determinism: Some articles such as [7] address
issues related to the use of HPCs. One of these problems
is the non-determinism of their values especially due
to the context switch of the processor or hardware
interrupts. We agree with all these observations but we
still think that hardware performance counters can be
used in constraint systems with simple functionalities
such as IoT and I-IoT. Moreover, if the detection of all
families of malware with this method can be discussed,
the state of art already shows that HPCs is particularly
efficient for microarchitectural attacks.

Limited datasets: Botacin et al. [4] recently
discuss about the use of a limited dataset to detect
microarchitectural attacks and other kinds of malware
with ML algorithms. In order to circumvent this issue,
we choose to use evasive attacks based on techniques
proposed in [28]. These include the insertion of NOP or
sleep instructions in between sensitive tasks to modify
the output counts to range closer to normal behavior. We
also use some data augmentation techniques to increase
the size of some applications. We can still improve by
finding more hidden strategies to obfuscate the attack
scripts or use GAN (Generative Adversarial Network)
based Augmentation as proposed in [16].

Improving the security of the solution: It was
proven in [2] that an advanced attacker with knowledge
of our simple local ML parameters, could hardly
develop a code that produces behavior similar to normal
while still succeeding the attack. However, the current
solution is implemented in software, which means
that the local security supervisor including the HPC
extraction, the tiny ML and the publishing of suspicious
samples implementation and the other applications share
resources. This issue still introduces a vulnerability that
can be used by an attacker to circumvent or break the
solution with a malware. An improved solution will be to
implement the local detector as a trusted application in a
TEE (Trusted Execution Environment) such as Trustzone
or as a dedicated hardware implementation as it was
proposed in [32].

Network availability: If the network is down or
victim of a Denial of Service attack, our approach
will only rely on the ability of the local ML to detect
the attacks. Still, it provides a level of security since

it can detect high probability samples. Depending
on the criticality of the user application, the lack of
communication between the IoT node and the control
server can also be considered as an attack.

Periodicity to send data to the control server:
Another parameter we would like to investigate is ∆s.
In this work it was empirically set to one minute, but
more research needs to be done that takes into account
communication overhead, detection latency, encryption
of suspicious data, and storage overhead. Sending data
more frequently to the remote can reduce the detection
time, but also increases the overheads, while decreasing
∆s reduces the overheads but increases detection time.

Malware detection: In this paper, we choose to focus
on the detection of microarchitectural attack as this class
of attacks is complex to circumvent. This kind of attacks
cannot really be considered as a class of malware but
rather as a part of a malware used to gain privileges or
steal sensitive data. As some malware do not use these
methods, it is required, to detect more categories of attacks
to update our dataset to include complete IoT malware
such as BashLite, IoTReaper or Mirai. Since these mal-
ware do not stress as much as microarchitectural attacks
the hardware, it will probably necessitate more complex
ML algorithms on the local device and the remote server
or samples from different sources than HPCs.

7. Conclusion

Embedded devices face an increasingly number of mi-
croarchitectural attacks. Such attacks often require hard-
ware changes to be circumvented and detection is gen-
erally preferred over mitigation. Several works have been
proposed that effectively detect microarchitectural attacks,
but without considering the limitations of embedded de-
vices such as computing power, memory, and bandwidth.
We have shown that local solutions can have a high
detection rate but also a high FPR, while remote solutions
are effective but require a large amount of resources and
network availability.

This work proposes a solution for detecting attacks
on low-resource devices. We propose a local-remote im-
plementation that minimizes the performance, memory,
and communication overhead in edge devices while hav-
ing a high detection rate and minimal FPR. The over-
all approach benefits from the presence of complex ML
algorithms in a cloud to take appropriate decisions but
is fully able to work in case of network downtime. We
also evaluate the proposed local-remote idea in terms
of various metrics. We show that the local system suc-
cessfully filters 99% of the normal extracted data, which
reduces the bandwidth in normal operation. Furthermore,
the local-remote mechanism increases precision compared
to a purely single level threshold implementation, while
the FP minimization strategy using an Isolation Forest, as
applied in the context of this solution, can reduce FPR to
10−5%, preventing unneeded attack responses. Finally, we
discuss the design choices and limitations of this work.

Multiple paths can be explored as future works.
First, many parameters can be tweaked to further re-
duce overhead (∆s, changing local implementation to an



FPGA/ASIC solution). This could also reduce the attack
surface of the local detection mechanism itself. Also, this
work is currently limited to microarchitectural attacks.
Many other kinds of attacks target embedded devices
and in particular IoT (malware exploiting software flaws,
denial of service botnets, cryptolockers, reverse shells,
etc.). As these attacks will less exploit the hardware, we
expect that they will be harder to detect with simply HPCs.
Experimental evaluations should then be performed on our
ability to detect other kinds of attacks with only HPCs and
other signals should be proposed.
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