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Abstract—The security of industrial supervisory control and data
acquisition systems (SCADA) has become a major concern since
the Stuxnet worm in 2010. As these systems are connected to the
physical world, this makes them possibly hazardous if a malicious
attacker is able to take over their control. SCADA can live up to
40 years, are particularly hard to patch, and quite often have no
security feature at all. Thus, rather than securing them, network
segregation is often used to prevent attackers from entering the
industrial system. In this paper, we propose a generic solution:
embed a point-to-point splitting protocol within a physical device,
thus able to physically isolate networks, perform deep packet
inspection and also provide encryption if necessary. We obtain
a kind of next generation firewall, encompassing at least both
diode and firewall features, for which conformity to security
policies can be ensured. Then we propose a set of associated
security properties for such devices, an example of hardware
implementation and the requirements for such a device’s security
architecture and filtering rules.

I. INTRODUCTION

The security of industrial networks has become an impor-
tant research area in recent years. Attacks against Industrial
Control Systems (ICS), including supervisory control and
data acquisition (SCADA) systems, are common [28], [3].
Those attacks often succeed since part of these systems were
only designed to fulfill functional requirements without any
security reinforcements. Moreover, due to the long lifetime
of these systems (potentially between 20 and 40 years) and
the complexity to apply security patches, segregation is often
proposed as a solution. In this situation, the system is split
in zones of possible different security levels and a security
device is inserted between each zone. In this way, if a zone is
compromised others should not be affected. As of today, two
types of devices can perform such segregation: firewalls and
diodes [6]. However diodes are too limited and with firewalls,
if a vulnerability is exploited on the security device itself,
then the whole device might be compromised since there is
no physical separation between its two sides. More recently,
next-generation firewalls (NGF) have been introduced that
generalize firewalls by adding more thorough flow analysis
(for instance of ciphered flow), access control or intrusion
detection systems [25], [18], [29]. To enhance the security
of SCADA systems, it is not only necessary to add such
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generalized filtering, but it would also be important to provide
encryption capabilities and low-level filtering. Both these
additions should be added to existing systems and not degrade
their performance.
Contributions. In this paper, we propose a solution based on a
physical device managing protocols splitting (or disruption)
within a network. Our proposed device, deployed between
two communicating entities, provides a physical and logical
separation between them. Then, in case of attacks on one
side, the device will act as a gate and stop the attacks;
thus reducing drastically potential consequences. Now, the
deployment of some new equipment into an existing network
could be tedious. Indeed the constraints range is large: high
availability, real time latency, etc. Thus, to facilitate integration
into the network the device is designed to be as flexible
as possible and dependent on the network requirements. In
particular, the device should split several kind of protocols
with security features, from OPC-UA TLS encryption, to
SFTP or FTPS, its key management is crucial. Indeed, one
way to provide transparent ciphering mechanism, is to place
such a device at both ends of the channel that has to be
secured. Overall, we view such a device in an abstract way
as a next-generation firewall providing encryption/decryption.
We also propose a formalization of the associated security
requirements and features as well as an associated generic
security architecture of such a device, including for instance a
public key infrastructure (PKI) and hardware security modules
(HSM) with key stores.
Related Work. The security of industrial systems has become
an hot topic in the past years with an increasing number of
attacks [4]. It has come to the point that numerous government
agencies are publishing white-papers to ensure that their
countries’ industry could survive a cyberwar. For instance, in
2011 the US National Institute of Standards and Technology
released a detailed survey on the topic [24] just like the
next year by the French Agence Nationale de la Sécurité des
Systèmes d’Information [1]. Several other surveys and norms
have then followed [7], [27], [12], but up to our knowledge
none of them formalize all the functionalities we identified
as security requirements for point-to-point splitting protocols.
Then, our splitting can be seen as an evolution from the propo-
sition [13] of applying splitting to VPN gateways which would
encompass also security features and architectures adapted to
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industrial control systems, as, e.g., in [5], but directly suited
to a device comprising keys and certificates.
Outline. In Section II, we first describe the requirements and
generic architecture of such a device. Then in Section III,
we propose an example of implementation. In Section IV
and V we respectively discuss two critical parts of protocol
splitting: public key infrastructure and stream analysis. Finally,
in Section VI, we provide a security analysis of our solution
and conclude in Section VII.

II. A PROTOCOL SPLITTING DEVICE

We start by detailing the goals and security requirements of a
splitting protocol device and then propose a generic design.

A. Device Aim

Our proposition for the security of SCADA systems is to
use dedicated physical devices embedding a point-to-point
splitting protocol: such a device is able to physically isolate
networks and perform deep packet inspection. Now, such a
device aims to be included into an existing infrastructure. The
security of firewalls has been widely studied and several public
or private organizations have proposed protection profiles to
detail their security features, as well as the threats and require-
ments in a certification procedure. For instance, the French
ANSSI published several protection profiles specifically in-
tended to industrial systems. Due to the novelty of protocol
splitting, no protection profile exists for such devices yet. The
closest protection profile available would concerns industrial
firewalls [2]. Other protection profiles for classical IT firewalls
are also proposed for instance by Common Criteria [10]. Ac-
cording to those documents, the main features a firewall should
include are: network filtering, protocol analysis, administration
functions, local logging and remote logging. Such firewall
could be deployed between existing networks to increase
the security, or into two distinct architectures to allow new
communications between them. However, a protocol splitting
device allows to split point-to-point protocols and thus brings
more security than a simple firewall. First it breaks the spread
of attacks, and second it eases the analysis of the stream by
transforming it into a known intermediate form. Even if the
protocol splitting device we present shares many goals with a
classical firewall, we show in Section II-B that there exists key
differences in the security features included, making it more
secure than a classical firewall.

B. Security Features and Requirements

To maintain the features detailed in Section II-A in an hostile
environment, the device must provide security features. Still
according to protection profiles, the minimal security features
we consider for a firewall are displayed below, sorted on the
main security need they cover.
Robustness. It is the ability to manage errors during execution
and cope with erroneous inputs. Within a firewall it is related
to syntax and semantic of configuration files, administrator
commands and packets to filter:
• ROB.1 – Malformed input management;

• ROB.2 – Filtering policy enforcement;
• ROB.3 – Protocol conformity analysis.
Authenticity. (or authentication) is to ensure that an entity is
the one it pretends to be. On the firewall, it applies to any
administrator configuring the firewall and the firewall could
also perform authentication on the messages it filters:
• AUT.1 – Secure connection with the authentication server;
• AUT.2 – Secure authentication on administration interface;
• AUT.3 – Access control policy.
Confidentiality. This is the guaranty that only authorized
entities will access the information they have been granted.
Within the firewall it can apply to the configuration (e.g., the
rules) depending on the context but mainly in the case of
encrypted messages to filter, it applies to the cryptographic
keys stored inside the filter:
• CON.1 – Secure storage of secrets;
• CON.2 – Configuration confidentiality.
Integrity. It is the preservation in time of data consistency.
It can apply to various contexts in the firewall including
configuration and outputs:
• INT.1 – Firmware signature;
• INT.2 – Configuration integrity;
• INT.3 – Logs integrity;
• INT.4 – Alarms integrity.
Isolation. Unlike firewalls, a protocol splitting device also aims
to provide isolation properties, as would be expected, e.g.,
from a diode. Thus, to complete the properties described above
for a firewall, we propose the following security feature for
a protocol splitting device. Isolation ensures that a running
process is not able to access and/or alter any information from
another one. It can apply to various components such as:
• ISO.1 – Memory isolation;
• ISO.2 – Peripheral isolation;
• ISO.3 – Computations isolation;
• ISO.4 – Network segregation.
We would have expected isolation properties to be present in
protection profiles related to diodes, but to the best of our
knowledge such properties are not mentioned. After having
identified these requirements, we will show along this paper
how a protocol splitting device can extend simple firewalls and
implement all these required properties.
C. Architecture of a Protocol Splitting Device
One of the main objective of the device is to split protocols,
partly to provide networks isolation. From an hardware point
of view, this implies that the device is at least divided in
three distinct parts: two parts are used to communicate with
external entities and the third one is dedicated to the security
services of the device. For instance, external entities could
be the client and the server into a TLS exchange. Within
the device, we call Hatches both parts dedicated to the
external communications and the middle part is called the
Core. Since each part represents a specific entity, it can be
materialized by a dedicated hardware. From an abstract point
of view, the three entities are seen as independent: thus, a
common implementation could use three distinct System-on-
Chips (SoC), each one including at least its own memory and



CPU, validating both ISO.1 and ISO.3. This way, the isolation
is inherent to the construction. Communications between each
internal entities is realized through an internal and dedicated
communication interface, e.g., some serial or parallel port.
The hatches are designed to receive and transmit the network
stream. Without lost of generality, let us suppose that the server
(S) for a generic secure communication protocol is situated at
the left side of the device, and the client (C) is on the right
side. The scenario is summarized in Figure 1.
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Fig. 1. Client & Server using the security device, with point-to-point splitting

In this configuration, a client sends a request to the server.
As in a kind of authorized Man-In-The-Middle, the server
intercepts the request on its right hatch. The main difference
with an attack is about the key management: even if the client
is willing to communicate with the server, the device will
transparently acts as the server by using a dedicated key pair
(see section IV-A). Once the request has been received, the
right hatch deciphers it, and deconstructs the message. The
obtained information, such as message address or functional
content, is rewritten into an intermediate internal language,
and transferred to the core.
The core’s main tasks are about the security management. It
should have access to an Hardware Security Device. It receives
the stream from the right hatches, and analyses it using
filtering rules [19]. In case of malicious behavior detection, the
device acts depending on the defined policy: it could write into
a log file which will be sent to the Security Information and
Event Management system (SIEM), and/or sound the alarm
directly (validating properties INT.3 and INT.4). In monitoring
systems like SCADA, the filtering operation also allows to
simply discard messages. Once the stream analysis has been
realized, the core transmits it to the left hatch.
Finally, the left hatch has to reconstruct the correct network
frame from the internal language. All applicative information
contained into the original message are reused ; but all the
transport information (MAC, TCP/IP UDP/IP) are destroyed
and reconstructed on the other hatch. This means that the
device is transparent for external entities. Theoretically, by
removing the device between previously communicating enti-
ties and rewiring them as before, the entities should be able
to communicate again.
The server response follows the same pattern, where right and
left hatches operations are exchanged. The protocol splitting
has been materialized by packets deconstruction, analysis and
reconstruction. Hence, a point-to-point connection between a
client and a server is now transformed into two point-to-point

connections: the first one between the client and the device,
the second one between the device and the server.

III. AN EXAMPLE OF IMPLEMENTATION

The difficulty is thus to create such a device, potentially
capable of bringing an unrivaled level of security to existing
or new industrial control system architectures. We thus next
propose hardware and software for an example implementation
of a protocol splitting device that supplies the required security
functionalities in a single and robust system. Moreover, this
system can be implemented without impacting applications in
the existing industrial control system, while simultaneously
providing protection from attacks. We first detail some im-
plementation choices for the hatches and the core and then
propose to add an HSM (Hardware Security Device) to the
design, in order to deal with all the security features.

A. Device Architecture

General Architecture. Both left and right hatches are made
with the same components. Considering they are used to
communicate with external entities, they own network commu-
nication interfaces (e.g., an Ethernet Port). The processing of
the received requests (resp. responses, depending on the hatch
side) is done by a secure operating system. The OS is in charge
of communications protocols (from configuration to packets
exchanges), packets deconstruction, and communication with
the core through a dedicated internal interface, thus validating
properties ISO.2 and ISO.4.
The core architecture is similar to that of the hatches. It is also
based on an ARM processor. The core represents the critical
part of the device and is directly linked to the HSM. It handles
the network stream analysis along with administrative tasks.
In order to obtain a kind of Trusted Execution Environment,
the OS is based on a secure kernel, in the same vein as [15].
Cryptographic operations are realized on a dedicated FPGA
chip. A dedicated library has been developed to respond to the
tight execution time constraints. The library supports current
cryptographic recommendations in terms of security parame-
ters. In particular, it manages the Elliptic Curves Cryptography
and takes its sources in the work [9].
Secure Boot Sequence. In order to be resistant against attacks
aiming at replacing the embedded software of the device, a
secure boot mechanism is mandatory. A way to implement
this feature is to use the process described in [20]. The idea
is to add integrity checks from a software to the next one
during the boot sequence. Hence, at each step, the integrity
of the next piece of software is guaranteed. The origin of
this verification sequence is a security feature provided by
recent FPGAs, where their initial bitstream is ciphered using
a symmetric key, securely stored into a dedicated permanent
memory [26].

B. Embedded Hardware Security Device

As already mentioned, the device embeds a Hardware Security
Device (HSM) connected to its core. It provides security fea-
tures to the core and to the hatches. As for many HSM, its goal



is to safeguard and manage digital keys and provide secure
cryptographic processing. It also provides tamper evidence
and tamper resistance. An HSM fitted for embedded system
constraints, for instance specially developed for industrial and
lightweight applications should be used. As reported in [22],
existing trusted technologies adapted to embedded systems are
usually more dedicated to ensure a secure boot or to provide
trusted applications rather than providing secure storage and
cryptographic operation secure services. Smart-cards could
also be used but might lack multiuser management and provide
insufficiently efficient symmetric cryptography. Still, we were
able to design our own HSM, constrained in terms of power
consumption (< 2W ), footprint (< 10cm2) and bill-of-
material (< $100), but which still provides sufficient levels of
performance and robustness to attacks. This is detailed next.
Hardware architecture. To fulfill these requirements without
downgrading the performance nor the robustness, the archi-
tecture, shown in Figure 2, is based on a trade-off between
three main components. A generic purpose Microcontroller
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Fig. 2. Embedded hardware security module

Unit (MCU) acts as an orchestra conductor. It receives the
“job” requests from the main system, manages that the “jobs”
are executed as requested and sends the answer back to core.
Then a Field Programmable Gate Array (FPGA) implements
the symmetric block cryptography that may be computed on
data streams. The FPGA brings high throughput and low
latency cryptographic processing. Then a secure microcon-
troller (Secure MCU) ensures the safeguard of master or
critical keys and performs the asymmetric cryptography using
those keys. It brings the robustness to physical attacks. An
embedded Multimedia Card (eMMC) is associated, for non-
volatile storage, where data is always encrypted before being
stored. It brings a high amount of storage to the HSM. If HSM
keys and cryptographic mechanisms are dispatched on purpose
on each of these three components, the hardware architecture
allows the HSM to benefit from each of the components
security or performance features. A tamper detection loop is
glued inside the HSM metal case and is connected on two
microcontroller pins. This loop is active when the HSM is
powered-on and can detect a physical intrusion inside its case.
When the case tampering is detected, the MCU erases all
volatile plaintext data from the MCU and the FPGA and then
shuts down all the components. No plaintext information is
stored neither on the MCU internal flash nor on the eMMC.
The secure microcontroller that stores no volatile secrets has
his own tamper detection features.

Communication between the HSM and the core. The HSM is
connected to the core through an USB port, it is enumerated
as a pseudo serial port (ttyUSB). A library installed on the
core operating system wraps the serial port and exposes a
PKCS#11 application programming interface (API). When the
HSM is connected, this API shows one slot and one token.
PKCS#11 calls are serialized within the library, then sent to
the HSM through the USB serial port, de-serialized on the
MCU and executed on the MCU or on the FPGA or on the
secure MCU. The HSM implements all PKCS#11 functions,
but for now only a subset of the cryptographic mechanisms.
The HSM provides a multiuser extension to the PKCS#11
standard. By default the standard [17] specifies: A Security
Officer (SO) that can manage the token and the user PIN, but in
any case has access to the data. A user which can store public
or private keys or objects and which can process cryptographic
operations on these object remotely on the token. In the
multiuser extension, the Security Officer keeps the same roles.
Each user has his own private objects and cannot access to
other user’s private objects; while public objects are accessible
to all logged in users. In order to keep the compatibility to
the PKCS#11 standard, the C_Login function prototype is
not modified, the parameter used for the user PIN has this
format: <login:PIN>. If C_Login is called only with the
PIN (without ”login”), the token logs the main user in. As
of today this main user has the same level of rights than the
other users, but it would be feasible to upgrade him as a ”super
user” which could thus access all the user’s private data.
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Fig. 3. HSM embedded software architecture

The PKCS#11 code is mainly executed in the MCU. The code
is splitted into basic tasks that are scheduled by FreeRTOS,
a real time and lightweight operating system. Figure 3 shows
the embedded software architecture: PKCS#11 calls from the
core are serialized on the USB port and de-serialized to be
replicated on the HSM internal ”Token API”. PKCS#11 ses-
sions are maintained by the ”Session Manager”, beyond public
sessions, users are authenticated by the ”User Manager” upon
login . The ”User manager” also handle creation, PIN update,
and deletion of the users. PKCS#11 objects are maintained
by the ”Object manager”, its role is to provide accessors
for reading and writing objects, to provide objects access
for cryptographic operations and to check user authorization
for accessing the objects. The ”Cryptographic Device” im-
plements PKCS#11 mechanisms, this device uses internally



the mbedTLS library. The ”Token Manager” handle the HSM
initialization, including function to set the Security Officer’s
first PIN.
Security architecture for point-to-point splitting protocols. The
HSM in the device for splitting protocol is involved in two
major phases: the configuration of the device itself and the
operation of the device. The HSM is configured by the core
directly through the PKCS#11 API thanks to the pkcs11-tool
command line. The configuration process mainly involves the
creation of the users and the population of certificates into the
HSM (see Section IV). In order to ease the process, the calls
to pkcs11-tool are packaged into scripts. A user is created
for the core and for each hatches; their private objects are
by consequence securely partitioned into the HSM. Then,
during any operational phase, the HSM is used to handle the
handshake of secure connections between clients and servers
of the device. To set the TLS connections between clients and
servers, the hatches have a classical TCP/IP stack, then the
OPC-UA proxies delegate the TLS handshake to the ”openssl”
library that is configured to use an external PKCS#11 ”en-
gine”. Thanks to this, asymmetric cryptographic calls from
openssl are redirected through the PKCS#11 engine to the
HSM. To allow hatches to access the HSM, we developed
a PCKS#11 proxy that exposes the same API than the HSM
using the communication bus between hatch and core. Overall,
certificates can be checked, both parties can be authenticated
and secure session keys can be established.

IV. KEYS AND CERTIFICATES MANAGEMENT

In this section, we describe the security architecture related
to the device. As the device is integrated into a security
architecture, the certificates and keys management is crucial.
We start by defining the involved entities, along with their
certificates and keys. Then, we explain each phase of the
device lifetime, from its manufacturing to its use in production.

A. Security Architecture and PKI

In the following, we describe the key pairs and certificates
needed with regards to their use (i.e., to boot and setup the
device, to administrate it, and to operate the protocol splitting).
Usually, these keys and certificates are stored into a secured
area located within the HSM (as required by the CON.1
property), and called the trust anchor store.
Entities. From manufacturing to its administration, many ac-
tors interact with the device:
• Manufacturer: the device seller. It also furnishes firmware
updates;
• Integrator: the entity which deploys the device into the
customer network. It also provides the first configuration. It
may also afterwards manage a complete PKI for the customer;
• Customers: the entities which are willing to deploy the
device into their infrastructure;
• Trusted employees: those entities will connect themselves
to the device in order to perform updates, or maintenance tasks
depending on their attributed role;

• Communicating entities: external entities which are willing
to exchange information using a secure protocol e.g., clients
and servers using a TLS connection.
More precisely, trusted employees are divided in roles: this
means that a kind of hierarchy is developed (property AUT.3).
For instance, roles could be:
• A super-administrator is able to manage the most critical
administration tasks, like firmware updates;
• An administrator performs trust anchor store updates;
• Technical Employees are able to configure the device.
Keys and Certificates. Figure 4 summarizes the global orga-
nization of the PKIs, CAs and certificates. The client and the
server are shown in Figure 1. We suppose here that three
PKIs are deployed, but depending on the setting some of them
can be merged. The right and left hatches communicate with
two distinct PKIs, managed respectively by a CCA (Client
CA) and a SCA (Server CA). The third PKI, for the device
administration is managed by an ICA (Integrator CA) at first,
and subsequently by an ECA (Employees CA). This PKI is
used by the device to authenticate users for administrative
tasks. In a different PKI setup, all CAs could be seen as sub-
CAs of a root CA associated to the customer PKI. Modifying
this store contents requires to be connected to the device as
an administrator.
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Fig. 4. Overview of the PKIs, CAs and Certificates

From the manufacturer point of view, a key pair is used in
order to sign the different firmwares like the kernel or the
OS along with their eventual updates. The public key and the
associated SecureBoot Certificate must be installed during the
manufacturing process, in order to allow the device to boot
correctly.
Eventually, this certificate can become a trusted orphan, i.e.,
there is no concrete associated PKI (which is represented as
the dotted frame on Figure 4). This means that software, from
the firmware to the OS is signed and ciphered. Therefore, its
integrity is preserved (cf property INT.1), and only trusted
entities are able to update it. An example of secure boot is
described in Section III-A.
Finally, the integrator provides one key pair, allowing an
administrator to connect himself on the device. The admin-
istrator, and more generally trusted people, are authenticated
on the device using a two factor authentication. A common



implementation is to use certificates located on a smart-card
(see Section IV-B for a more detailed explanation). This means
that a key pair has been previously generated and certified
before being stored into the smart-card. The certificate of
the ICA is installed into the device trust anchor store. The
integrator might provide a complete PKI to the customer. In
this case, it is in charge of certifying all keys using a dedicated
CA, and adding the CA certificate into the store.
In the case where the customer has its own PKI, it must
add the different CAs certificates into the store. In particular,
the ones from the clients and servers the device is linked
to. Moreover, it should add the CA certificate of the PKI
used to deliver the trust employees’ key pair, in order to
allow them to be authenticated by the device. The customer
should also generate key pairs for the different applications of
the device, e.g., one key pair for OPC-UA, another one for
SFTP, etc. A more specific key scheme could be employed,
by associating a key pair to an IP address. Each key must
be certified by the CCA or the CSA in order to allow the
device to be authenticated by other network devices. Finally, a
symmetric key could be generated and stored into the HSM in
order to cipher configuration files (property CON.2). Indeed,
since the customer has the possibility to define a specific
configuration depending on its network constraints, it also has
the possibility to perform backups. By security, the device
should output ciphered files. Finally, the configuration files
integrity (cf. INT.2) can be ensured via classical cryptographic
integrity mechanisms such as HMAC.

B. Life Cycle of keys and certificates

Here, we describe the life cycle of the device, from its
integration into the customer network to its administration.
Integration process. Once the device has booted correctly
for the first time, it must be initialized to accept external
connections, both from clients and servers and from admin-
istrators. The latter use a two factors authentication system,
using smart cards in the manner of credit cards (cf. AUT.2).
First, the administrator proves his card ownership by entering
his PIN code on a keyboard linked to the device. Then, the
card is authenticated by the device using certificate based
authentication. Therefore, certificates of its associated CA
must have been previously included within the device trust
anchor. This means that the manufacturer provides the first
boot administrator smart cards and that those have been signed
by their dedicated CA. Once the administrator is connected to
the device, he has the possibility to add new CA certificates
into the trust anchor store. First, he adds the manufacturer
CA. This allows people using certificates that have been issued
from this CA to be authenticated by the device. Second, the
administrator supplements the store with the CA certificates
used to distribute clients and servers certificates. In the case
of two distinct PKIs, the client and the server might have two
different CAs, and so different certificates must be included.
The device is then able to accept connections.
Production. During the production phase, the device could
need to generate new key pairs. There are two possibilities:

either the device generates them, or key pairs are added by the
administrator. In the first case, once the key pair has been gen-
erated, the device generates the associated ToBeSigned form
of X.509 certificates [21]. Then, information are transmitted to
the CA, which signs it. Then, the certificate should be added
to the trust anchor store in order to be used by the device. The
other possibility is that the CA generates both the key pair and
the associated certificate, and then an administrator puts both
of them into the HSM.
Administration. Administration of the device includes dif-
ferent kind of tasks. First, it should regularly be updated
to prevent attacks. These updates could be performed by a
device administrator (using a certificate issued by the cus-
tomer, manufacturer or integrator CA). However, the update
files should be signed by the manufacturer to ensure their
integrity. Since the device has the associated certificate, it
can check the signature. Moreover, the trust anchor store
content should be managed: generation or revocation of key
pairs and certificates, addition of new CAs (with the inclusion
of their certificates). Depending on the situation, the device
could employ the Online Certificate Status Protocol (OCSP)
(even OCSP Pinning [21], to save communications) along
with Certificate Revocation Lists (CRL) and ∆-CRLs. The
first two options are recommended if an OCSP responder is
deployed in the network, whereas CRL are applicable without
any online interaction. However, it requires that an adminis-
trator updates them following the customer’s PKI Certification
Practice Statement and Certification Policy. This implements
the property AUT.1. Finally, the device embeds dedicated
configurations related to the filtering parts. This part could
be delegated to a sub-administrator: this means that a trust
person is able to modify configuration files but cannot change
security parameters.

V. PROTOCOLS SPLITTING AND FILTERING

In this Section, we explain how we perform protocol splitting
and filtering of the messages.

A. Protocols Splitting

Part of the network isolation is provided by the splitting
action applied on each protocol stream received by the device.
The idea is to rewrite each message in a common generic
language: information contained into the meta-data along
with message content must be extracted. This step is called
deconstruction. In the end, all protocols are transformed into
this generic language which can be filtered. Benefits of this
approach are twofold. First, since the filtering is performed
on the intermediate representation after deconstruction, one
can change the protocols used by the system while keeping
the rules of the filter. Secondly, this offers the possibility to
transform a protocol into another one.
To perform the deconstruction, there is a server for each
protocol implemented on a hatch of the device. This server
has the responsibility to transform each received message into
the intermediate representation. We target protocols where
commands allow a client to read and write variables on a



server. This is very common in the case of industrial protocols
but can also be applied to other domains. For instance, SFTP
directly implements READ and WRITE on files and those
can also be seen as variables. The information included in the
intermediate form are the following:
• Time of emission if provided and time of reception by the
device,
• Service (read/write/subscribe) and path (request/response),
• For each variable targeted by the command: the dimensions
of the variable (for arrays, matrix, etc.); the targeted range (to
only target parts of arrays, matrix); the values (new values for
write request, values read in read responses).

B. Stream Analysis

As mentioned in Section V-A, we take advantage of the fact
that a protocol splitting device is tailored to filter READ and
WRITE requests on variables. In this context, we propose
different types of rules for the filter which aim to ensure
access permission control on the variables through deep packet
inspection.
1) Ensure that only explicitly authorized protocols (TLS,
SFTP or OPC-UA) and services (READ, WRITE) will pass
through the device. This allows for instance to configure the
device to be read-only for all requests (all write requests would
be rejected).
2) Ensure that only explicitly authorized peers will commu-
nicate together. This classical firewall property enforces a
client to only communicate with servers it is allowed to. As
mentioned earlier, authentication of clients and servers can
be based on IP addresses, ports or cryptographic keys when
available. Also depending on the context it can be possible to
authenticate users on clients (e.g., using a secure token).
3) Enforce access control of clients on server variables. This
allows a client to only access a subset of the variables on the
server. For instance, a client with lower access rights could
only access non-critical variables while an administrator would
access all.
4) Enforce permissions control of clients on server variables.
This allows a client to only make a certain type of requests
(e.g., only read) while other clients could write. This property
differs from property 1 in the fact that it is specific to each
client and not global to the device. It would also allow to
specify read-only variables for all clients while other variables
could be written.
5) Maintain global properties on the state of the system. To
achieve this, the filter keeps a copy of certain variables as
they go through it. Those make it possible for the user to
specify safety properties using propositional logic predicates
(over Boolean or integers) such as ”The furnace should not
start if the door is open”. One can argue that the filter can
only have a local vision of the variable and their value can
have changed since the last time they appeared in a message.
However, since the filter is supposed to be the single point of
passage for all messages, the vision of the filter is at least the
same as the client. Moreover, we will show in Section VI-B
how we can deal with unknown or old values.

To make a judgment, the filter has three primitives: (1)
ACCEPT, (2) REJECT and (3) LOG. For each request, it
verifies the rules one by one in the order of they appear.
1) In case of ACCEPT, the request is accepted without veri-
fying the next rules (it is a ”force accept”). This primitive is
useful to white-list some special cases that would be blocked
by later rules.
2) In case of REJECT, the request is blocked with looking at
the next rules.
3) In case of LOG or in absence of judgment, the filters
evaluates the next rules. Finally the filter reaches the end of
all rules without a REJECT, the request is accepted.

Algorithm 1 Evaluation of messages by the filter
Require: RULES is the set of rules configured on the filter.
Return: True if the whole message is accepted, False

otherwise.
1: function EVALMESSAGE(msg = [req1, .., reqn])
2: for all req ∈ msg do
3: for all rule ∈ RULES do
4: judgment← EVALRULE(req, rule)
5: if judgment = REJECT then
6: return False
7: else if judgment = ACCEPT then break
8: return True

However depending on the protocol (e.g., OPC-UA), a mes-
sage can be a sequence of requests (e.g., READ(var1, var2,
var3)). To implement security feature ROB.2, we propose a se-
quential evaluation of rules in the general case in Algorithm 1.
One will note that in absence of ACCEPT, the filter will check
the next request of the message if any. Conversely, in case
of REJECT, the filter will reject the whole message without
looking at other requests, if any, and independently of those
being accepted. Thus, rejects have priority over acceptations.

VI. SECURITY GUARANTEES PROVIDED

In this Section, we perform a security analysis of the solution
we propose to show that the protocol splitting device respects
the security requirements presented in Section II-B.

A. Improvements by Splitting Protocols
Splitting protocols adds security in the sense that messages are
deconstructed and reconstructed in a safe environment. Thus
all possible network attacks on the stack before the applicative
level will not go through the device (e.g., malformed packets,
ping of death, etc.). Malformed packets will be refused by
the servers on the hatches, thus implementing security feature
ROB.3. Moreover, at the applicative level we guarantee that
only a controlled subset of all possible commands of each
protocol is going through the device. This is done by design
when translating each message in the intermediate represen-
tation. If a message cannot be translated, then it is refused.
Thus for instance if we choose to not implement a “Delete”
command at the intermediate level, then the DELE and RMD
commands from SFTP will be blocked, preventing the clients
from deleting files and directories.



B. Improvements by Filtering
The filter obviously adds some security via its function
blocking messages tagged dangerous (when writing the rules).
Moreover, it is designed to be robust and to resist to unex-
pected events such as malformed messages or rules.
Bounded execution. As detailed in [19], the filter is able to
evaluate rules on a message in bounded time and memory.
Every operator that can be used in a rule allows verification
of a message in constant time. Thus if we associate a constant
processing time τi to each predicate Pi appearing ni times total
in all the rules, we can compute the worst case processing time
T of a request as: T =

∑
τini.

Three-valued logic. As the filter maintains a local view of
certain specified variables to enforce global safety properties
on the system, it can happen that a rule requires the value
of a variable that have never been seen or that is too old.
In this situation, no decision can be taken. For this sake, we
use a three valued logic such as Kleene’s logic [14]. Three
valued logic introduce a value neither True nor False,
called Unknown or Irrelevant and extend classic logic
operators to handle such a value. Thus the filter may answer
to a message: that it does not know if it should accept it or
not (a default policy is thus needed).
Configuration Check. The main problem with any filter is to
allow users to express the rules they have in mind. The most
secure filter has no purpose if it is badly configured. Obviously,
malformed configuration files are rejected as they can have a
misleading behavior or even break the filter. Rejecting them
implements security feature ROB.1. However if rules are
correctly formed, they still can be in conflict with each other.
Thus, to prevent inconsistent rules configuration that would
for example block all messages, we propose some consistency
checks. They verify for instance that all permission on clients,
servers and variables are compatible with each other (for
instance, if a variable is read only then no client should be
authorized to overwrite it).

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a security device for in-
dustrial networks. It provides security by isolating the left
and right sides of the device, which are seen as separated
networks. It validates all security requirements of classical
firewall protection profiles but also isolation requirements such
as memory, peripheral and computations isolation as well
as network segregation, bridging the gap between firewalls
and diodes. The results presented here are the result of the
aramis.minalogic.net R&D project and will be partly found
in Seclāb products in the near future. Compared to a firewall
we provide isolation (attacking the first hatch does not allow
to bypass the filters). Compared to a diode we allow to
observe the industrial process while preventing an attacker to
modify its behaviour, moreover, contrary to a diode, periodical
polling of variable values is not needed. In the future, we
also plan to support more protocols within the device and, in
addition to our security analysis, an emulation of the device
could go through a SCADA security testbed such as [11]. For

each protocol we would add, we need to provide a way to
convert it into the intermediate language representation. We
also consider to generalize the use of the device. Currently,
its purpose is to separate zones with different security levels.
However, it could also be used as a secure gateway between
two zones (or even as a standalone VPN), connected with
an insecure protocol, while still applying protocol splitting
and filtering on the messages. This way we can also provide
security even when the used protocols do not.
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[5] S. Blanch-Torné, F. Cores, and R. M. Chiral. Agent-based PKI for
distributed control system. In WCICSS’15, pages 28–35, Dec. 2015.
doi:10.1109/WCICSS.2015.7420319.

[6] E. Byres, J. Karsch, and J. Carter. NISCC good practice guide
on firewall deployment for SCADA and process control networks.
Technical report, National Infrastructure Security Co-Ordination Cen-
tre, 2005. URL: https://www.ncsc.gov.uk/content/files/protected files/
guidance files/2005022-gpg scada firewall.pdf.

[7] Y. Cherdantseva, P. Burnap, A. Blyth, P. Eden, K. Jones, H. Soulsby,
and K. Stoddart. A review of cyber security risk assessment methods for
SCADA systems. Computers & Security, 56:1 – 27, 2015. URL: http:
//www.sciencedirect.com/science/article/pii/S0167404815001388, doi:
http://dx.doi.org/10.1016/j.cose.2015.09.009.

[8] Firewall protection profile v2.0. Common Criteria, Apr. 2008.
URL: https://www.commoncriteriaportal.org/files/ppfiles/FW%
2520PP-93-EN.pdf.

[9] M.-A. Cornelie. Implementations and protections of software and
hardware cryptographic mechanisms. Phd, U. Grenoble Alpes, 2016.
URL: https://tel.archives-ouvertes.fr/tel-01377372.

[10] E. Cosman, editor. Security for industrial automation and control
systems - Models and Concepts. Int. Society of Automaton, 2017. URL:
http://isa99.isa.org/Public/Series/Documents/ISA-62443-1-1-Public.pdf.

[11] A. Ghaleb, S. Zhioua, and A. Almulhem. SCADA-SST: a SCADA
security testbed. In WCICSS’16, pages 1–6, Dec 2016. doi:10.1109/
WCICSS.2016.7882610.

[12] L. Jacquin. Performance/security trade-off for high-bandwidth Internet
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