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Abstract

This paper deals with distributed matrix multiplication. Each player owns only
one row of both matrices and wishes to learn about one distinct row of the prod-
uct matrix, without revealing its input to the other players. We first improve on
a weighted average protocol, in order to securely compute a dot-product with
a quadratic volume of communications and linear number of rounds. We also
propose two dual protocols with five communication rounds, using a Paillier-like
underlying homomorphic public key cryptosystem, which is secure in the semi-
honest model or secure with high probability in the malicious adversary model.
Using cryptographic protocol verification tools, we are able to check the security
of both protocols and provide a countermeasure for each attack found by the tools.
We also give a generic randomization method to avoid collusion attacks. As an
application, we show that this protocol enables a distributed and secure evaluation
of trust relationships in a network, for a large class of trust evaluation schemes.

1 Introduction
Secure multiparty computations (MPC), introduced by Yao [40] with the millionaires’
problem, has been intensively studied during the past thirty years. The idea of MPC
is to allow n players to jointly compute a function f using their private inputs with-
out revealing them. In the end, they only know the result of the computation and no
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more information. Depending on possible corruptions of players, one may prove that
a protocol may resist against a collusion of many players, or that it is secure even
if attackers try to maliciously modify their inputs. Mostly any function can be se-
curely computed [8] and many tools exist to realize MPC protocols. They comprise
for instance the use of a Trusted Third Party [19], the use of Shamir’s secret sharing
scheme [36], or more recently the use of homomorphic encryption [25]. It is also
possible to mix these techniques [15].

Our goal is to apply MPC to the distributed evaluation of trust, as defined in
[28]. Indeed, there are several schemes for evaluating the transitive trust in a network.
Some use a single value representing the probability that the expected action will hap-
pen; the complementary probability being an uncertainty on the trust. Others include
the distrust degree indicating the probability that the opposite of the expected action
will happen [26]. More complete schemes can be introduced to evaluate trust: Jøsang
introduces the Subjective Logic notion which expresses beliefs about the truth of propo-
sitions with degrees of ”uncertainty” in [28]. In e.g. [23] algorithms are proposed to
quantify the trust relationship between two entities in a network, using transitivity and
reachability. Then the authors of [27] applied the associated calculus of trust to public
key infrastructures. For instance, in [20], aggregation of trusts between players on a
network is done by a matrix product defined on two monoids (one for the addition of
trust, the other one for multiplication, or transitivity): each player knows one row of the
matrix, its partial trust on its neighbors, and the network as a whole has to compute a
distributed matrix squaring. Considering that the trust of each player for his colleagues
is private, at the end of the computation, nothing but one row of the global trust has to
be learned by each player (i.e., nothing about private inputs should be revealed to oth-
ers). Thus, an MPC protocol to resolve this problem should combine privacy (nothing
is learned but the output), safety (computation of the function does not reveal anything
about inputs) and efficiency [30]. First, we need to define a MPC protocol which al-
lows us to efficiently compute a distributed matrix product with this division of data
between players. The problem is reduced to the computation of a dot product between
vectors U and V such that one player knows U and V is divided between all players.

Related Work. Dot product in the MPC model has been widely studied [18, 1, 39].
However, in these papers, assumptions made on data partitions are different: there, each
player owns a complete vector, and the dot product is computed between two players
where; in our setting, trust evaluation should be done among peers, like certification
authorities. For instance, using a trusted third party or permuting the coefficients is
unrealistic. Then, to reduce some communication costs of sharing schemes, the use of
homomorphic encryption is natural [25]. In such cases the underlying homomorphic
cryptosystem is quite often that of Paillier [34] or of Benaloh [9, 24].

Now, computing a dot product with n players is actually close to the MPWP pro-
tocol of [17], computing a mean in a distributed manner: computing dot products is
actually similar to computing a weighted average where the weights are in the known
row, and the values to be averaged are privately distributed. The original MPWP pro-
tocol has to use a Benaloh-like homomorphic encryption. We here show how to use
instead a Paillier-like system, usually faster in practice. Also, in MPWP the total vol-
ume of communication for a dot product is O

(
n3
)

with O (n) communication rounds.
Intuitively, by making the first player masking each term in the dot-product sum, in-
stead of having all the players mask their own, we can get rid of the secret sharing
part of MPWP. This enables us first to reduce the amount of communications from
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O
(
n3
)

to O (n) and, second, to reduce the number of communication rounds. Indeed
instead of having O (n) steps, we can use a setting with b n−1

2 e parallel rounds, each
one with less than five parallel communication steps. Thus, we propose in Section 6 a
way to reduce the parallel complexity of the protocol (that could also apply to MPWP):
we replace a ring of n players into parallel rings of 3 or 4. Security is modified, as
the new protocol is secure against semi-honest adversaries while the initial one was
secure against a coalition of malicious ones. Now we also propose a generic mitiga-
tion scheme, which we call a random ring order, that allows to recover the security
against malicious adversaries, with high-probability, while preserving efficiency. We
then obtain a first secure and efficient protocol.

Another possibility is to use a two-phases protocol sketched in [41]: this O (n) pro-
tocol requires to homomorphically exchange vector coefficients in a first phase. Then,
it uses a multiparty summation protocol. In [41] it is suggested to use protocols by [5]
for the summation in the second phase. We show here that this summation protocol is
not resistant against a coalition of malicious insiders. To repair the protocol, one can
use instead a secret sharing scheme, but this is back to an O

(
n2
)

communication pro-
tocol. We here instead propose first to use Paillier-like homomorphic schemes within
the whole protocol. Second we prove that it is possible to use a classical salary-sum
protocol for the summation phase, thanks to our novel random ring order mitigation
scheme. We thus also preserve both advantages, a O (n) time and communications
costs as well as security against malicious adversaries. This resulting protocol is then
actually somewhat dual to our first one.

Note that several other generic MPC protocols exist, usually evaluating circuits, but
they require O

(
n3
)

computations and/or communications per dot-product [10, 15].

Contributions. Overall, we provide the following results:

1. A fully secure protocol, P-MPWP, improving on MPWP, which reduces both
the computational cost, by allowing the use of Paillier’s cryptosystem, and the
communication cost, from O

(
n3
)

to O
(
n2
)
.

2. An O (n) time and communications protocol, called Distributed and Secure Dot-
Product (DSDPn) (for n participants), which allows us to securely compute a dot
product UV , against a semi-honest adversary, where one player, the master, owns
a vector U and where each player knows one coefficient of V .

3. A parallel variant that performs the dot-product computation in parallel among
the players and thus uses a constant total number of rounds. This is extended
to a Parallel Distributed and Secure Matrix-Multiplication (PDSMMi) family of
protocols.

4. A dual novel approach, Y T P-SS, adapted from a combination of [41] and [5],
together with its security analysis, and with the same characteristics:

• Against malicious adversaries it yields an O
(
n2
)

communications protocol,
using homomorphic encryption and secret sharing.

• Against semi-honest adversaries it yields a novel, O (n) time and commu-
nications protocol. Similarly, our random ring order mitigation can be
applied to it, in order to preserve privacy with high probability, also against
a coalition of malicious insiders.
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Both approaches, DSDP and Y T P-SS, detailed later respectively in Section 4 and
Section 7, are sketched in Figure 1:

• in DSDP, the master player first receives the encrypted coefficients of V ;
then, second, he homomorphically multiplies them by his U coefficients
while masking everything with random nonces (si in Figure 1, left); third,
the dot-product is recovered by a distributed homomorphic sum.

• in Y T P-SS, the master player first sends its encrypted coefficients of U ;
then, second, the other players homomorphically multiply them by their
coefficients of V while masking everything with random nonces (si in Fig-
ure 1, right); third the sum of nonces is computed in a distributed manner
as a homomorphic salary-sum.

DSDP YTPSS

EPi(vi)

EPi(vi)
uiEPi(si) EA(ui)

viEA(si)

EPi+1(∑i−1+si)EPi+1(xi+1)EPi+1(∑i)

EP3(x3)EP3(u2v2 + s2) EP3(s2 + r)
EA(∑uivi + si) EA(∑si)

EA(ui)

Figure 1: Our dual approaches for secure distributed dot products (left: DSDP, see Section 4;
and right: Y T P-SS, see Section 7)

5. We also provide a security analysis of both DSDP and Y T P-SS protocols us-
ing ProVerif [12, 11], a cryptographic protocol verification tool. Such analysis
allows us to define countermeasures for each found attack:

• Adapted proofs of knowledge in order to preserve privacy and

• a random ring order, where private inputs are protected as in a wiretap
code [33] and where the players take random order in the protocol to pre-
serve privacy with high probability, even against a coalition of malicious
insiders.

We also use AVISPA [3] in order to compare the security of the salary sum
protocol [35] with the summation protocol from [5]. More precisely we used
OFMC [6] or CL-ATSE [38] the two backend tools of AVISPA suite that are
able to deal with several exclusive-or operators. This analysis allows us to safely
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replace the summation protocol from [5] used in [41] by the lighter salary sum
protocol [35] in order to obtain Y T P-SS.

6. Finally, we show how to use these protocols for the computation of trust aggre-
gation, where classic addition and multiplication are replaced by more generic
operations, defined on monoids.

A preliminary subset of these results were presented at the Secrypt’16 confer-
ence [21]. Here, we first recall these results and then develop a whole new dual ap-
proach. We detail this new approach and its associated security analysis and track
some attacks with more automatic verification tools. As a side effect we show that
the protocol for private sum in [5] is in fact not more secure than a classical salary
sum [35], in a malicious setting. Comparing with [21], we also give here a detailed
description of the new efficient algorithms: we have now complete formalizations for
private sum and private dot-products, as well as effective arbitrary precision implemen-
tations in C++ for private multiparty matrix multiplication. Both the formalizations and
the implementations are available online in this web-site: matmuldistrib.forge.imag.fr.
For instance, we have ran practical performance evaluation on realistic inputs: nowa-
days, more than 700 different certification authorities are very active [22]; we show that
with our new schemes they could efficiently compute their complete trust relationships,
and thus enhance the security of public-key infrastructures, by performing a distributed
private computation taking less than 10 minutes overall.

Outline. In Section 2, we thus first recall some multi-party computation notions. We
then present in Section 3 our quadratic variant of MPWP and a linear-time protocol in
Section 4. The associated security proofs and countermeasures are given in Section 5
and we present parallelized versions in Section 6. A dual approach is then presented in
Section 7, that now allow for the faster implementation. Finally, in Section 8, we show
how our protocols can be adapted to perform a private multi-party, monoid-based, trust
computation in a large network.

2 Background
We use a public-key homomorphic encryption scheme where both addition and mul-
tiplication are considered. There exist many homomorphic cryptosystems, see for in-
stance [32, § 3] and references therein. We need the following properties on the en-
cryption function E (according to the context, we use EPubB, or E1 or just E to de-
note the encryption function, similarly for the signature function, D1 or DprivB): com-
puting several modular additions, denoted by Add(c1;c2), on ciphered messages and
one modular multiplication, denoted by Mul(c;m), between a ciphered message and a
cleartext. That is, ∀m1,m2 ∈ Z/mZ: Add(E(m1);E(m2)) = E(m1 +m2 mod m) and
Mul(E(m1);m2) = E(m1m2 mod m). For instance, Paillier’s or Benaloh’s cryptosys-
tems [34, 9, 24] can satisfy these requirements, via multiplication in the ground ring for
addition of enciphered messages (Add(E(m1);E(m2)) = E(m1)E(m2) mod m), and
via exponentiation for ciphered multiplication (Mul(E(m1);m2) = E(m1)

m2 mod m),
we obtain the following homomorphic properties:

E(m1)E(m2) = E(m1 +m2 mod m) (1)
E(m1)

m2 = E(m1m2 mod m) (2)
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Since we consider the semantic security of the cryptosystem, we assume that adver-
saries are probabilistic polynomial time machines. In MPC, most represented intruders
are the following ones:

• Semi-honest (honest-but-curious) adversaries: a corrupted player follows the
protocol specifications, but also tries to gather as many information as possible
in order to deduce some private inputs.

• Malicious adversaries: a corrupted player that controls the network and stops,
forges or listens to messages in order to gain information.

3 From MPWP to P-MPWP
We first describe the MPWP protocol [17], and then we explain modifications made to
construct P-MPWP a lighter version of MPWP.

3.1 MPWP Description
The MPWP protocol [17] is used to securely compute private trust values in an additive
reputation system between n players. Each player Pi (excepted P1, assumed to be the
master player) has a private entry vi, and P1 private entries are weights ui associated
to others players. The goal is to compute a weighted average trust, i.e., ∑

n
i=2 ui ∗ vi.

The idea of MPWP is the following: the first player creates a vector TV containing
her private entries ciphered with her own public key using Benaloh’s cryptosystem,
i.e., TV = [E1(w2), . . . ,E1(wn)]. Then, P1 also sends a (n− 1)× (n− 1) matrix M,
with all coefficients initialized to 1 and a variable A = 1. Once (M,TV,A) received,
each player computes: A = A∗E1(ui)

vi ∗E1(zi), where zi is a random value generated
by Pi. At the end, the first player gets D1(A) = ∑

n
i=2 uivi + zi. Then, the idea is to

cut the zi values in n− 1 positive shares such that zi = ∑
n
j=2 zi, j. Next, each zi, j is

ciphered with the public key of Pj, the result is stored into the ith column of M, and M
is forwarded to the next player. In a second phase, players securely remove the added
random values to A, from M = (mi, j) = (E j(zi, j)): each player Pj, except P1, computes
her PSS j = ∑

n
i=2 D j(mi, j) = ∑

n
i=2 zi, j by deciphering all values contained in the jth row

of M; then they send γ j = E1(PSS j) to P1, their PSSi ciphered with the public key of
P1. At the end, P1 retrieves the result by computing Trust = D1(A)−∑

n
j=2 D1(γ j) =

D1(A)−∑
n
j=2 PSS j = D1(A)−∑

n
j=2 ∑

n
i=2 zi, j = D1(A)−∑

n
i=2 zi = ∑

n
i=2 uivi.

3.2 P-MPWP: A lighter MPWP
P-MPWP is a variant of MPWP with two main differences: first Paillier’s cryptosystem
is used instead of Benaloh’s, and, second, the overall communications cost is reduced
from O

(
n3
)

to O
(
n2
)

by sending parts of the matrix only. All steps of P-MPWP
but those clearly identified in the following are common with MPWP, including the
players’ global settings. Since P-MPWP is using a cryptosystem where players can
have different modulus, some requirements must be verified in the players’ settings.
First of all, a bound B needs to be fixed for the vectors’ private coefficients:

∀i,0≤ ui ≤ B,0≤ vi ≤ B (3)
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With Benaloh, the common modulus M must be greater than the dot product, thus at
most:

(n−1)B2 < M. (4)

Differently, with Paillier, each player Pi has a different modulus Ni. Then, by following
the MPWP protocol steps, at the end of the first round, P1 obtains A = ∏

n
i=2 E1(ui)

vi ∗
E1(zi). In order to correctly decipher this coefficient, if the players’ values, as well
as their random values zi, satisfy the bound (3), her modulo N1 must be greater than
(n− 1)(B2 +B). For others players, there is only one deciphering step, at the second
round. They received (n− 1) shares all bounded by B. Hence, their modulus Ni need
only be greater than (n− 1)B. These modulus requirements are summarized in the
following lemma:

Lemma 1. Let n > 3 be the number of players. Under the bound (3), if ∀i,0≤ zi ≤ B
and if also the modulus satisfy (n−1)(B2 +B)< N1 and (n−1)B < Ni, ∀i = 2, . . . ,n,
then at the end of P-MPWP, P1 obtains Sn = ∑

n
i=2 ui ∗ vi.

Now, the reduction of the communications cost in P-MPWP, is made by removing
the exchange of the full M matrix between players. At the zi, j shares computation, each
Pi directly sends the jth coefficient to the jth player instead of storing results in T . In
the end, each player Pi receives (n− 1) values ciphered with his public key, and he
can compute the PSSi by deciphering and adding each received values, exactly as in
MPWP. Thus, each player sends only O (n) values, instead of O

(
n2
)
. All remaining

steps can be executed as in MPWP.
Both Paillier’s and Benaloh’s cryptosystems provides semantic security [34, 24, 9],

thus the security of P-MPWP is not altered. Moreover, since a common bound is fixed
a priori on private inputs, P-MPWP security can be reduced to the one in MPWP with
the common modulo M between all players [31]. Finally, since all exploitable (i.e.,
clear or ciphered with the dedicated key) information exchanged represents a subset of
the MPWP players’ knowledge, if one is able to break P-MPWP privacy, then one is
also able to break it in MPWP.

4 A Linear Dot Product Protocol
We first provide a protocol for 3 players. We then generalize it for n and give a security
proof for a semi-honest intruder.

4.1 Overview with Three Players
We first present in Figure 2 our DSDP3 protocol (Distributed and Secure Dot-Product),
for 3 players. This is a detailed version of Figure 1, left. The idea is that Alice is
interested in computing a dimension 3 dot-product S = uT ·v, between her vector u and
a vector v whose coefficients are owned by different players. First, Bob and Charlie
have to share their private values with Alice. They need to cipher the coefficients v2
and v3 to hide them from Alice. Hence, Bob uses his public key to cipher v2 and
obtains c2 = EpubB(v2). Charlie follows the same process by using his own public
key and gets c3 = EpubC(v3). Then, both players send their coefficients, encrypted, to
Alice. Next, she homomorphically multiplies each one of these by her ui coefficients,
e.g. cu2

2 = EpubB(v2u2) and cu3
3 = EpubC(v3u3). Subsequently, she picks a random value

r2, and ciphers it using the public key of Bob. Alice homomorphically multiplies the
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obtained EpubB(r2) with the previous ciphered product (i.e. cu2
2 =EpubB(v2u2)) and gets

α2 = EpubB(v2u2 + r2). Hence, she masked her private coefficient u2 using the random
value r2. Similarly, she computes α3 = EpubC(v3u3 + r3) with another random value r3
and the public key of Charlie. Finally, she sends both values to Bob.

As the owner of associated private key, Bob deciphers α2 and obtains ∆2 = v2u2 +
r2. Then, he ciphers ∆2 using Charlie’s public key. He is now able to homomorphically
multiply the latter cipher with α3. The result, denoted β3 = EpubC(v3u3 + r3 + v2u2 +
r2), is sent to Charlie. Charlie starts by deciphering β3 to get ∆3 = v3u3+r3+v2u2+r2.
Next, he ciphers the previous value with the public key of Alice, sends her the obtained
γ = EpubA(v3u3 + r3 + v2u2 + r2). The security of the protocol is based on the use of
homomorphic encryption schemes and random values. The formal proof is detailed in
Section 5. However, based on the previous description and Figure 2, the intuition is the
following:

• At the beginning, Alice only received ciphered values, so that she cannot deduce
any information ;

• During the next phase, the other players decrypt intermediate values (αi, βi).
They obtain equations containing at least three terms uivi + ri: with two un-
knowns ui and ri they are not able to recover vi ;

• Finally the players enter a ring computation of the overall sum before sending it
to Alice. Then only, Alice removes her random masks to recover the final dot-
product. Since at least two players have added u2v2 +u3v3, there is at least two
unknowns for Alice, v2 and v3, but a single equation.

Alice (P1) Bob (P2) Charlie (P3)

c2 = EpubB(v2) c3 = EpubC(v3)c2oo
c3oo

α2 = cu2
2 ∗EpubB(r2)

α3 = cu3
3 ∗EpubC(r3)

α2, α3 //

∆2 = DprivB(α2) {now ∆2 is (v2u2 + r2)}

β3 = α3 ∗EpubC(∆2)
β3 //

∆3 = DprivC(β3)

{now ∆3 is (v3u3 + r3)+(v2u2 + r2)}

γ = EpubA(∆3)
γoo

S = DprivA(γ)− r2− r3 +u1v1 {now S is u1v1 +u2v2 +u3v3}

Figure 2: DSDP3: Secure dot product of vectors of size 3 with a Paillier-like asymmetric cipher.

After several decryptions and re-encryptions, and removal of the random values
ri, we obtain S = ∑uivi. The homomorphic Properties (1) and (2) only guaranty that
D(Add(Mul(E(vi);ui);ri)) = viui + ri mod Ni, for the modulo Ni of the cryptosystem
used by player Pi. But then these values must be re-encrypted with another player’s
cryptosystem, potentially with another modulo. Finally Alice also must be able to
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remove the random values and recover S over Z. On the one hand, if players can
share the same modulo M = Ni for the homomorphic properties then decryptions and
re-encryptions are naturally compatible. This is possible for instance in Benaloh’s
cipher. On the other hand, in a Paillier-like cipher, at the end of the protocol, Alice will
actually recover S4 = ((u2v2 + r2) mod N2 +u3v3 + r3) mod N3. She can remove r3,
via S3 = S4− r3 mod N3, but then S3 = ((u2v2 + r2) mod N2 +u3v3) mod N3. Now,
if vectors coefficients are bounded by say B, and if the third modulo is larger than the
second, N3 > N2 +B2, the obtained value is actually the exact value over the naturals:
S3 = (u2v2 + r2) mod N2 + u3v3. Then Alice can remove the second random value,
this time modulo N2: S2 = (u2v2 + u3v3) mod N2, where now N2 > 2B2 suffices to
recover S = S2 ∈ N. We generalize to n players this protocol in the following section.

4.2 General Protocol with n Players
We give the generalization DSDPn, of the protocol of Figure 2 for n players in Al-
gorithm 2 hereafter. For this protocol to be correct, we use the previously defined
bound (3) on the players’ private inputs.

Algorithm 2 DSDPn Protocol: Distributed and Secure Dot-Product of size n
Require: n ≥ 3 players, two vectors U and V such that P1 knows complete vector U ,

and each players Pi knows component vi of V , for i = 1 . . .n;
Require: Ei (resp. Di), encryption (resp. decryption) function of Pi, for i = 2 . . .n.
Ensure: P1 knows the dot-product S =UTV .

1: for i = 2 . . .n do
2: Pi : ci = Ei(vi)

3: Pi
ci→ P1

4: for i = 2 . . .n do
5: P1 : ri

$← Z/NiZ
6: P1 : αi = cui

i ∗Ei(ri) so that αi = Ei(uivi + ri)

7: P1
α2→ P2

8: for i = 2 . . .n−1 do P1 :
αi+1→ Pi

9: P2 : ∆2 = D2(α2) so that ∆2 = u2v2 + r2

10: P2 : β3 = α3 ∗E3(∆2) so that β3 = E3(u3v3 + r3 +∆2); P2
β3→ P3

11: for i = 3 . . .n−1 do
12: Pi : ∆i = Di(βi) so that ∆i = ∑

i
k=2 ukvk + rk

13: Pi : βi+1 = αi+1 ∗Ei+1(∆i) so that βi+1 = Ei+1(ui+1vi+1+ ri+1+∆i); Pi
βi+1→ Pi+1

14: Pn : ∆n = Dn(βn); Pn : γ = E1(∆n); Pn
γ→ P1

15: return P1 : S = D1(γ)−∑
n−1
i=1 ri +u1v1.

Then, for n players, there are two general cases: First, if all the players share the
same modulo M = Ni for all i for the homomorphic properties, then Alice can also
use M to remove the ri. Then, to compute the correct value S, it is sufficient to sat-
isfy the bound (4). Second, for a Paillier-like cipher, differently, the modulo of the
homomorphic properties are distinct. We thus prove the following Lemma 3.

Lemma 3. Under the bound (3), and for any ri, let M2 =(u2v2+r2) mod N2 and Mi =
(Mi−1 +uivi + ri) mod Ni, for i = 2 . . .n−1. Let also Sn+1 = Mn and Si = (Si+1− ri)
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mod Ni for i = n . . .2. If we have:{
Ni−1 +(n− i+1)B2 < Ni, for all i = 3..n
(n−1)B2 < N2

(5)

then S2 = ∑
n
i=2 uivi ∈ N.

Proof. By induction, we first show that Si = Mi−1 +∑
n
j=i u jv j, for i = n..3: indeed

Sn = (Mn − rn) mod Nn = (Mn−1 + unvn) mod Nn. But Mn−1 is modulo Nn−1, so
(Mn−1 + unvn) < Nn−1 + B2, and then (5) for i = n, ensures that Nn−1 + B2 < Nn
and Sn = Mn−1 + unvn ∈ N. Then, for 3 ≤ i < n, Si = (Si+1− ri) mod Ni = (Mi +

∑
n
j=i+1 u jv j− ri) mod Ni = (Mi−1 + uivi + ri +∑

n
j=i+1 u jv j− ri) mod Ni = (Mi−1 +

∑
n
j=i u jv j) mod Ni, by induction. But (3) enforces that Mi−1+∑

n
j=i u jv j < Ni−1+(n−

i+1)B2 and (5) also ensures the latter is lower than Ni. Therefore Si =Mi−1+∑
n
j=i u jv j

and the induction is proven. Finally, S2 = (S3− r2) mod N2 = (M2 +∑
n
j=3 u jv j− r2)

mod N2 = (∑n
j=2 u jv j) mod N2. As ∑

n
j=2 u jv j < (n− 1)B2, by (5) for i = 2, we have

S2 = ∑
n
j=2 u jv j ∈ N.

This shows that the DSDPn protocol of Algorithm 2 can be implemented with a
Paillier-like underlying cryptosystem, provided that the successive players have in-
creasing modulo for their public keys.

Theorem 4. Under the bounds (3), and under Hypothesis (4) with a shared modulus
underlying cipher, or under Hypothesis (5) with a Paillier-like underlying cipher, the
DSDPn protocol of Algorithm 2 is correct. It requires O (n) communications and O (n)
encryption and decryption operations.

Proof. First, each player sends his ciphered entry to P1, then homomorphically added
to random values, ri. Then, Pi (i ≥ 2) deciphers the message received by Pi−1 into ∆i.
By induction, we obtain ∆i = ∑

i
k=2 ukvk + rk. This value is then re-enciphered with

next player’s key and the next player share is homomorphically added. Finally, P1 just
has to remove all the added randomness to obtain S = ∆n−∑

n
i=2 ri +u1v1 = ∑

n
i=1 uivi.

For the complexity, the protocol needs n− 1 encryptions and communications for the
ci; 2(n−1) homomorphic operations on ciphers and n−1 communications for the αi;
n−1 decryptions for the ∆i; n−1 encryptions, homomorphic operations and commu-
nications for the βi; and finally one encryption and one communication for γ. Then P1
needs O (n) operations to recover S.

5 Security of the DSDPn Protocol
We study the security of DSDPn using both mathematical proofs and automated verifi-
cations. We first demonstrate the security of the protocol for semi-honest adversaries.
Then we incrementally build its security helped by attacks found by ProVerif [12], an
automatic verification tool for cryptographic protocols.

5.1 Security Proofs
The standard security definition in MPC models [30] covers actually many security
issues, such as correctness, inputs independence, privacy, etc. We first prove that under
these settings, computation of the dot product is safe.
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Lemma 5. For n ≥ 3, the output obtained after computing a dot product where one
player owns complete vector U, and where each coefficient vi of the second vector V is
owned by the player Pi, is safe.

Proof. After executing DSDPn with n ≥ 3, P1 received the dot product of U and V .
Therefore, it owns only one equation containing (n−1) unknown values (coefficients
from v2 to vn). Then, he cannot deduce other players’ private inputs.

Then, proving the security relies on a comparison between a real-world protocol
execution and an ideal one. The latter involves a hypothetical trusted third party (T T P)
which, knowing only the players’ private inputs, returns the correct result to the correct
players. The protocol is considered secure if the players’ views in the ideal case cannot
be distinguished from the real ones. Views of a player Pi (denoted ViewPi ) are defined as
distributions containing: the players’ inputs (including random values), the messages
received during a protocol execution and the outputs. The construction of the corrupted
players’ view in the ideal world is made by an algorithm called Simulator.

Definition 6. In the presence of a set C of semi-honest adversaries with inputs set XC,
a protocol Π securely computes f : ([0,1]∗)m→ ([0,1]∗)m (and fC denotes the outputs
of f for each adversaries in C) if there exists a probabilistic polynomial-time algorithm
Sim, such that: {Sim(C,{XC}, fC(X))}X∈([0,1]∗)m is computationally indistinguishable
from {C,{ViewΠ

Pi
}Pi∈C}.

For DSDPn, it is secure only if C is reduced to a singleton, i.e. if only one player is
corrupted.

Lemma 7. By assuming the semantic security of the cryptosystem E, for n≥ 3, DSPDn
is secure against one semi-honest adversary.

Proof. We assume that the underlying cryptosystem E is semantically secure (IND-
CPA secure). First, we suppose that only P1 is corrupted. His view, in a real execution
of the protocol, is ViewP1 = {U,R,γ,S,A,B,C}, where U = {ui}1≤i≤n, R = {ri}1≤i≤n,
A = {αi}2≤i≤n, B = {βi}3≤i≤n−1 and C = {ci}2≤i≤n. Now, Sim1 is the simulator for
P1 in the ideal case, where a simulated value x is denoted x′: by definition, P1’s pri-
vate entries (vectors U and R) are directly accessible to Sim1, along with the output
S, sent by the T T P. Sim1 starts by generating n− 2 random values, and then ciphers
them using the corresponding public keys: this simulates the c′i values. Then, us-
ing the provided ri and ui with the associated c′i and Pi’s public key, Sim1 computes:
α′i = c′ui

i ∗Ei(ri),2 ≤ i ≤ n. Next, the simulation of B′ is done by ciphering random
values with the appropriate public key. The γ′ value is computed using R along with
the protocol output S: γ′ = E1(S+∑

n−2
i ri + u1v1). In the end, the simulator view is

ViewSim1 = {U,R,γ′,S,A′,B′,C′}. If an adversary is able to distinguish any ciphered
values (e.g. C′ from C and thus A′ from A), hence he is able to break the semantic secu-
rity of the underlying cryptographic protocol. This is assumed impossible. Moreover,
since the remaining values are computed as in a real execution, P1 is not able to dis-
tinguish ViewP1 from ViewSim1 . Second, we suppose that a player Pi, i≥ 2 is corrupted
and denote by Simi the simulator in this case. Since the role played by each participant
is generic, (except for Pn, which only differs by his computation of γ instead of βn+1),
the simulators are easily adaptable. During a real protocol execution, the view of Pi
is ViewPi = {vi,A,B,C,γ,∆i}. Simulating the values also known to P1 is similar, up to
the used keys. Hence, the simulation of A′, B′, γ′, C′ (except ci) is made by ciphering
random values using the adequate public key. More precisely, ci is ciphered using vi
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and the public key of Pi. For ∆′i, the simulator Simi has to forward the random value
previously chosen to be ciphered as αi. Indistinguishability is based on the semantic
security of E (for A, B, C and γ) and on the randomness added by P1 (and thus un-
known by Pi). Then, ∆′i is computationally indistinguishable from the real ∆i. Hence,
ViewPi and ViewSi are indistinguishable and DSDPn is secure against one semi-honest
adversary.

5.2 Automated Verification
Alongside mathematical proofs, we use an automatic protocol verification tool to an-
alyze the security of the protocol. Among existing tools, we use ProVerif [12, 11]. It
allows users to add their own equational theories to model a large class of protocols. In
our case, we model properties of the underlying cryptosystem including addition and
multiplication. Sadly, verification of protocol in presence of homomorphic function
over abelian groups theory has been proven undecidable [16]. Moreover, as showed
in [29], some equational theories such as Exclusive-Or can already outspace the tool’s
capacities. Thus we have to provide adapted equational theories to be able to obtain
results with the tool. We modeled the application of Pailler’s or shared modulus en-
cryption properties on αi messages that Bob receives as follows:

(i). ∀u,v,r,k, bob(Ek(r),u,Ek(v)) = Ek(uv+ r)

This property allows Bob to obtain u2v2 + r2 from α2. This also allows an intruder to
simulate such calculus and impersonate Bob. We also model:

(ii). β3 by ∀u,v,r,x,y,z,k, charlie(Ek(uv+ r),Ek(xy+ z)) = Ek(uv+ xy+ r+ z)

(iii). β4 by ∀u,v,r,x,y,z,a,b,c,k, dave(Ek(uv+xy+r+z),Ek(ab+c))=Ek(uv+xy+
ab+ r+ z+ c)

In the following, we use ProVerif to prove the security of our protocols under the
abstraction of the functionalities given in our equational theory. ProVerif discovers
some attacks in presence of active intruder. We then propose some countermeasures
and we reach the limits of ProVerif (it does not terminate for the corrected version of
the protocol). In this situation it is possible to guide the analysis of ProVerif through
the nounif keyword. It basically says to ProVerif to cut specified paths. It can be usefull
to remove possible loops or just to speed up the analysis in some cases. However, it is
far from being trivial because it may remove the completeness of the analysis, doing
such kind of trick requires to be sure that the cut paths do not lead to attacks which is
difficult. It is better to leave the default mode of the tool for this. All the associated
source files are available in a web-site: matmuldistrib.forge.imag.fr.

Analysis in case of a passive adversary. Using these equational theories on the pro-
tocol described in Figure 2, we verify it in presence of a passive intruder. Such adver-
sary is able to observe all the traffic of the protocol and tries to deduce secret informa-
tion of the messages. This corresponds to a ProVerif intruder that only listens to the
network and does not send any message. By default, this intruder does not possess the
private key of any agent and thus does not belong to the protocol. To model a semi-
honest adversary as defined in Section 2, we just give secret keys of honest participants
to the passive intruder knowledge in ProVerif. Then the tool proves that all secret terms
cannot be learn by the intruder for any combinations of leaked key. This confirms the
proofs given in Section 5.1 against the semi-honest adversaries.

12
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Intruder(Alice) Bob Charlie

c2=EpubB(v2)oo

α2 = cuI
2 ∗EpubB(rI)

x3 = EpubC(vI)

α3 = xu′I
3 ∗EpubC(r′I)

α2,α3 //

∆2 = DprivB(α2) {now ∆2 is (v2uI + rI)}
β3=α3∗EpubC(∆2) //

∆3 = DprivC(β3)

{now ∆3 is (vIu′I + r′I)+(v2uI + rI)}
γ=EpubA(∆3)oo

v2 = (DprivA(γ)− vIu′I− rI− r′I)u
−1
I

Figure 3: Attack on the secrecy of v2

Analysis in case of malicious adversary. The malicious adversary described in Sec-
tion 2 is an active intruder that controls the network and knows a private key of a
compromised honest participant. Modeling this adversary in ProVerif, we are able to
spot the two following attacks and give some countermeasures:

(i). Only the key of Alice is compromised and the countermeasure uses proofs of
knowledge.

(ii). Only the key of Charlie is compromised and the countermeasure uses signatures.

In the rest of the section, we present these two points. In the Section 6.2, we also give
a solution called random ring for the case where both keys of Alice and Charlie are
compromised.

(i) The key of Alice is compromised. An attack on the secrecy of v2, generated by
Bob, is then presented in Figure 3.

Bob sends his secret value v2, encrypted as c2 in Figure 3 to Alice. The malicious
adversary usurps Alice and générate fakes values ri and vi for all participants. Those
values are used in the protocol as αi instead of the one generated by Charlies, Dave, etc.
Thus v2 is the only value unknown to the adversary. The protocol continues normaly
(∆2 is sent to Bob who computes ∆3 and sends it to Charlie, etc.). At the end of the
protocol, the adversary obtains the computed result γ. As said earlier, γ is made the
values known from the adversary except v2. Thus the adversary learns v2.

If the key of Alice (P1) is compromised, ProVerif also finds an attack on any of
the other players secrecy. Suppose, w.l.o.g, that P2 is the target, P1 replaces each αi
except α2 by ciphers Ei(xi) where xi are known to him. xi = 0 could do for instance
(xi = 0vi+ ri also), since after completion of the protocol, P1 learns u2v2+ r2+∑

n
i=3 xi,

where the ui and ri are known to him. Therefore, P1 learns v2. Note also that similarly,
for instance, α2 = 1v2 +0 and x3 = v3 could also reveal v2 to P3.

Counter measure: this attack, and more generally attacks on the form of the αi can
be counteracted by zero-knowledge proofs of knowledge. P1 has to prove to the other
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players that αi is a non trivial affine transform of their secret vi. For this we use a
variant of a proof of knowledge of a discrete logarithm [13] given in Figure 4.

Alice Public: g Bob

c = EpubB(v)
coo

α = EpubB(uv+ r)

µ = gu and ρ = gr
α, µ, ρ //

Check µ 6= 1,µ 6= g so that u 6= 0,u 6= 1

Check ρ 6= 1,ρ 6= g so that r 6= 0,r 6= 1

∆ = DprivB(α) if ∆ = uv+ r

Check g∆ ?
== µvρ then guv+r = (gu)vgr

Figure 4: Proof of a non trivial affine transform

In the Protocol 2, this proof of a non trivial affine transform applies as is to α2

with µ2 = gu2 , ρ2 = gr2 so that the check of P2 is δ2 = g∆2 ?
== µv2

2 ρ2. Differently, for
the subsequent players, the δi−1 = g∆i−1 used to test must be forwarded: indeed the
subsequent players have to check in line 12 that ∆i = uivi + ri +∆i−1. Thus with P1
providing µi = gui , ρi = gri and Pi−1 providing δi−1, the check of player Pi ends with
δi = g∆i ?

== µvi
i ρiδi−1. As for proofs of knowledge of discrete logarithm, secrecy of

our proof of non trivial affine transform is guaranteed as long as the discrete logarithm
is difficult. The overhead in the protocol, in terms of communications, is to triple the
size of the messages from P1 to Pi, with αi growing to (αi,µi,ρi), and to double the size
of the messages from Pi to Pi+1, with βi growing to (βi,δi). In terms of computations,
it is also a neglectible linear global overhead.

(ii) The key of Charlie is compromised. There ProVerif finds another attack on the
secrecy of v2. This time the key of Charlie is compromised and the malicious adversary
blocks all communications to and from Alice who is honest. The adversary performs
the same manipulation on the αi terms which are directly sent to Bob. Thus, this attack
becomes feasible since the adversary knows the terms u2, u3, r2, r3 and v3 that he
generated and ∆3 = (v2u2 + r2)+ (v3u3 + r3) using the private key of Charlie. Such
an attack relies on the fact that Bob has no way to verify if the message he receives
from Alice has really been sent by Alice. This can be avoided using cryptographic
signatures.

This attack can be generalized to any number of participants. The attack needs the
adversary to know the key of Alice (since she is the only one to know the ui and ri
values thanks to the signatures). Then, to obtain the secret value of a participant Pi, the
key of participants Pi−1 and Pi+1 are also needed:

(i). Pi−1 knows ∆i−1 = (u2v2 + ...+ui−1vi−1 + r2 + ...+ ri−1).

(ii). Pi+1 knows ∆i+1 = (u2v2 + ...+ui−1vi−1 +uivi +ui+1vi+1 + r2 + ...+ ri−1 + ri +
ri+1).
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Thus, by simplifying ∆i−1 and ∆i+1, the malicious adversary can obtain uivi +
ui+1vi+1 + ri + ri+1 where he can remove ui+1, vi+1, ri, ri+1 and ui to obtain vi. For
more than three participants, we see in Section 6.2 that these kinds of threats can be
diminished if the protocol is replayed several times in random orders.

6 Parallel Approach
In order to speed up the overall process, we show that we can cut each dot-product into
blocks of 2 or 3 coefficients. On the one hand, the overall volume of communications
is unchanged, while the number of rounds is reduced from n to a maximum of 5. On
the other hand, semantic security is dropped, but we will see at the end of this section
that by simply repeating the protocol with a wiretap mask it is possible to make the
probability of breaking the protocol negligible.

An application of the DSDPn protocol is the computation of matrix multiplica-
tion. In this case, instead of knowing one vector, each player Pi owns two rows, Ai
and Bi, one of each n× n matrices A and B. At the end, each Pi learns a row Ci of
the matrix C = AB. In order to compute the matrix product, it is therefore natural to
parallelize DSDPn: each dot-product is cut into blocks of 2 or 3 coefficients. Indeed,
scalar product between three players (resp. four) involves two (resp. three) new coef-
ficients in addition to the ones already known by Pi. For P1, the idea is to call DSDP3
on the coefficients u1,v1 and u2,u3 of P1, and v2,v3 of P2 and P3. Then P1 knows
s = u1v1 +u2v2 +u3v3. P1 can then continue the protocol with P4 and P5, using (s,1)
as his first coefficient and u4,u5 to be combined with v4,v5, etc. P1 can also launch the
computations in parallel. Then P1 adds his share u1v1 only after all the computations.
For this it is sufficient to modify line 15 of DSDPn as: P1 : S = D1(γ)−∑

n−1
i=1 ri. This is

given as the ESDPn protocol variant in Algorithm 8.

Algorithm 8 ESDPn Protocol: External Secure Dot-Product of size n
Require: n+1 players, P1 knows a coefficient vector U ∈ Fn, each Pi knows compo-

nents vi−1 of V ∈ Fn, for i = 2 . . .n+1.
Ensure: P1 knows S =UTV .

return DSDPn+1(P1 . . .Pn+1, [0,U ], [0,V ]).

6.1 Partition in Pairs or Triples
Depending on the parity of n, and since gcd(2,3) = 1, calls to ESDP2 and ESDP3
are sufficient to cover all possible dot-product cases, as shown in protocol PDSMMn
of Algorithm 9. The protocol is cut in two parts. The loop allows us to go all over
coefficients by block of size 2. In the case where n is even, a block of 3 coefficients is
treated with an instance of ESDP3. In terms of efficiency and depending on the parity
of n, ESDP2 is called n−1

2 or n
2 −2 times, and ESDP3 is called 0 or 1 times.

Theorem 10. The PDSMMn Protocol in Algorithm 9 is correct. It runs in less than 5
parallel communication rounds.

Proof. Correctness means that at the end, each Pi has learnt row Ci of C = AB. Since
the protocol is applied on each rows and columns, let us show that for a row i and a
column j, Algorithm 9 gives the coefficient ci j such that ci j = ∑

n
k=1 aik ∗bk j. First, the
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Algorithm 9 PDSMMn Protocol: Parallel Distributed and Secure Matrix Multiplica-
tion
Require: n players, each player Pi knows rows Ai and Bi of two n×n matrices A, B.
Ensure: Each player Pi knows row i of C = AB.

1: for Each row: i=1 . . . n do
2: for Each column: j=1 . . . n do
3: s← ai,ibi, j
4: if n is even then
5: k1← (i−1) mod n+1
6: k2← (i−2) mod n+1
7: k3← (i−3) mod n+1
8: s← s+ESDP3(Pi, [Pk3 ,Pk2 ,Pk1 ], [ai,k3 ,ai,k2 ,ai,k1 ], [bk3, j,bk2, j,bk1, j])

9: t← n−4
2

10: else
11: t← n−1

2
12: for h = 1 . . . t do
13: k1← (i+2h−1) mod n+1; k2← (i+2h) mod n+1
14: s← s+ESDP2(Pi, [Pk1 ,Pk2 ], [ai,k1 ,ai,k2 ], [bk1, j,bk2, j])
15: ci, j← s

ki coefficients are just the values 1 . . .(i−1) and (i+1) . . .n in order. Then, the result
of any ESDP2 step is ai,k1bk1, j +ai,k2bk2, j and the result of the potential ESDP3 step is
ai,k3bk3, j + ai,k2bk2, j + ai,k1bk1, j. Therefore accumulating them in addition of ai,i ∗ bi, j
produces as expected ci j = ∑

n
k=1 aik ∗bk j.

Now for the number of rounds, for all i and j, all the ESDP calls are independent.
Therefore, if each player can simultaneously send and receive multiple data we have
that: in parallel, ESDP2, like DSDP3 in Figure 2, requires 4 rounds with a constant
number of operations: one round for the ci, one round for the αi, one round for β3 and
one round for γ. As shown in Algorithm 2, ESDP3, like DSDP4, requires only a single
additional round for β4.

We have proven the security for one execution of the protocol. Using the trans-
formation of Arapinis et al. [2], we can generalize it to several execution. This trans-
formation only requires that all participants (honest and malicious ones) share a nonce
and their identity at the beginning of the protocol. Then these extra information is
added into each messages passed to all cryptographic primitives used in the protocol.
Then we obtain a version of the protocol secure for an unbounded number of sessions.
This approach allows us to have a secure protocol for any number of session without
changing the spirit of our proposal.

6.2 Random Ring Order Mitigation
We have previously seen that if the first player of a dot-product cooperates with the
third one she can always recover the second player private value. If the first player
cooperates with two well placed players she can recover the private value of a player
in between. In the trust evaluation setting every malicious player plays the role of
the first player in its row and therefore as soon as there is a collaboration, there is a
risk of leakage. To mitigate this cooperation risk, our idea is to repeat the dot product
protocol in random orders, except for the first player. A similar proposition is sketched
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to work with an honest majority in [14, § 2.1]. We here extend it for any number of
malicious adversaries up to n− 2 and analyze the expected behavior. A similar idea,
with disjoint orders, is presented also in [37] but with O(n) deterministic repetitions.
We will show next than on average much less repetitions are needed. The idea is that to
access a given private value, the malicious adversaries have to be well placed in every
repetition of the protocol. Therefore if their placement is chosen uniformly at random
the probability that they recover some private value diminishes with the number of
occurrences. The fundamental property behind our random ring order is that even if
we have some malicious colluding participants, the protocol should be safe because the
order is chosen uniformly at random over all existing orders. Then the probability that
the intruders are always between the same attacked participant is very small. Hence in
practice we only need that the random ring order is publicly known by every participant
and that it is random. For instance we can use a cryptographic hash function that takes
in input the public keys of all participants and the start time of the protocol, that is
known by all participants (by publishing it on a website for instance or broadcasting it
at the beginning). It allows us to have a unique random ring order per session of the
protocol.

We detail the overall procedure only for one dot-product, within the PDSMMn pro-
tocol. Each player except the first one masks his coefficient v as in a simple wiretap
channel [33], as presented in Algorithm 11.

Algorithm 11 Wiretap repetition of the dot-product
1: The players agree on d occurrences.
2: Each player computes his placement order in each occurrence of the protocol from

the cryptographic hash function.
3a: With a shared modulus cryptosystem, the players should share a common modulo

M satisfying Hypothesis (4). In the first occurrence, each player Pj then masks his
private input coefficient v j with d−1 random values λ j,i ∈ Z/MZ: v j−∑

d
i=2 λ j,i.

3b: With a Paillier-like cryptosystem, the players choose their moduli according to Hy-
pothesis (5), where B2 is replaced by dB2, in groups of size n= 4 (the requirements
of (5) on the moduli are somewhat sequential, but can be satisfied independently
if each modulo is chosen in a distinct interval larger than 3dB2). Then, in the first
occurrence, each player Pj masks his private input coefficient v j with d−1 random
values 0≤ λ j,i < B: v j +∑

d
i=2(B−λ j,i)< dB.

4: Then for each subsequent occurrence, each player replaces its coefficient by one
of the λ j,i.

5: In the end, the first player has gathered d dot-products and just needs to sum them
in order to recover the correct one.

Theorem 12. Algorithm 11 correctly allows the first player to compute the dot-product.

Proof. First, in a shared modulus setting, after the first occurrence, Alice (P1) gets S1 =

∑
n
j=2 u j

(
v j−∑

d
i=2 λ j,i

)
. Then in the following occurrences, Alice gets Si =∑

n
j=2 u jλ j,i.

Finally she computes ∑
d
i=1 Si = ∑

n
j=2 u jv j. Second, similarly, in a Paillier-like setting,

after the first occurrence, Alice recovers S1 = ∑
n
j=2 u j

(
v j +∑

d
i=2(B−λ j,i)

)
. Then in

the following occurrences, Alice gets Si = ∑
n
j=2 u jλ j,i. Finally she computes ∑

d
i=1 Si−

(d−1)B(∑n
j=2 u j) = ∑

n
j=2 u j(v j +(d−1)B)− (d−1)Bu j = ∑

n
j=2 u jv j.

We give now the probability of avoiding attacks in the case when n = 2t + 1, but
the probability in the even case should be close.
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Theorem 13. Consider n = 2t +1 players, grouped by 3, of which k ≤ n−2 are ma-
licious and cooperating, including the first one Alice. Then, it is on average sufficient
to run Algorithm 11 with d ≤ 2ln

(
min{k−1,n− k, n−1

2 }
)(

1+ k−1
n−k−1

)
occurrences, to

prevent the malicious players from recovering any private input of the non malicious
ones.

Proof. The idea is that for a given private input of a non malicious player Bob, to be
revealed to Alice, Bob needs to be placed between cooperating malicious adversaries
at each occurrence of the protocol. If there is only one non malicious player, then
nothing can be done to protect him. If there is 2 non malicious, they are safe if they are
together one time, this happens with probability 1

n−2 , and thus on average after n−2 oc-
currences. Otherwise, PDSMMn uses t = n−1

2 groups of 3, including Alice. Thus, each
time a group is formed with one malicious and one non malicious other players, Alice
can learn the private value of the non malicious player. Now, after any occurrence, the
number a of attacked players is less than the number of malicious players minus 1 (for
Alice) and obviously less than the number of non malicious players: 0≤ a < min{k−
1,n−k}. Thus let b= k−1−a and c= n−k−a. In the next occurrence, the probability
of saving at least one more non malicious is a(a−1+c)(n−3)!

(n−1)!
n−1

2 = a(a−1+c)
2(n−2) = a(n−k−1)

2(n−2) ,

so that the average number of occurrences to realize this is En,k(a) =
2(n−2)

a(n−k−1) . Thus,
Tn,k(a), the average number of occurrences to save all the non malicious players, satis-
fies Tn,k(a)≤ En,k(a)+Tn,k(a−1)≤ ∑

3
i=a En,k(i)+Tn,k(2) = (∑3

i=a
1
i )

2(n−2)
n−k−1 +Tn,k(2).

With 2 attacked and c saved, we consider Tn,k=n−c−2(2) = n−2
c+1 so that Tn,k(a)≤ (Ha−

3
2 )

2(n−2)
n−k−1 + n−2

n−k−1 . Now bounds on the Harmonic numbers give Ha ≤ lna (see, e.g.,
[7]) and since a ≤ k− 1 and a ≤ n− k, this shows also that 2a ≤ n− 1. Therefore,
Tn,k(a)≤ 2ln

(
min{k−1,n− k, n−1

2 }
) n−2

n−k−1 .

For instance, if k, the number of malicious insiders, is less than the number of non
malicious ones, the number of repetitions sufficient to prevent any attack is on average
bounded by O (logk). To guaranty a probability of failure less than ε, one needs to
consider also the worst case. There, we can have k = n−2 malicious adversaries and
the number of repetitions can grow to n ln(1/ε):

Proposition 14. With n = 2t + 1, the number d of random ring repetitions of Al-
gorithm 11 to make the probability of breaking the protocol lower than ε satisfies
d < n ln(1/ε) in the worst case.

Proof. There are at least 2 non-malicious players, otherwise the dot-product reveals
the secrets in any case. Any given non-malicious player is safe from any attacks if in at
least one repetition he was paired with another non-malicious player. In the worst case,
k = n−2 players are malicious and the latter event arises with probability (1− 1

n−1 )
d

for d repetitions. If d≥ n
(
ln
(
ε−1
))

, then d > (n−1)(− lnε)> lnε

ln(1− 1
n−1 )

, which shows

that (1− 1
n−1 )

d < ε.

Note that using d = (n− 1)/2 disjoint Hamiltonian paths instead of random ones
can be an alternative in this worst case [37].

6.3 Complexities and Security Parameter
Overall, the wiretap variant of Algorithm 11 can guaranty any security, at the cost of
repeating the protocol. As the number of repetitions is fixed at the beginning by all
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the players, all these repetitions can occur in parallel. Therefore, the overall volume of
communication is multiplied by the number of repetitions, while the number of rounds
remains constant. This is summarized in Figure 5, for the average (Theorem 13) and
worst (Proposition 14) cases of Algorithm 11, and where the protocols of the previous
sections are also compared.
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Figure 5: Quadratic and linear protocols timings

On the one hand, we see in Figure 5 that quadratic protocols, with homomorphic
encryption, are not usable for a realistic large group of players. On the other hand,
quasi linear time protocols present good performance, while preserving some reason-
able security properties: the average wiretap curve is on average sufficient to prevent
any attack and still has a quasi linear asymptotic behavior. The steps in this curve are
the rounding of log(n) to the next integer and correspond to one more random ring
wiretap round.

7 Y T P-SS: A Dual Protocol
Yao, Tamassia and Proctor present in [41] an alternative secure quadratic dot-product
protocol, which will be abbreviated as Y T P in the following, with a similar data dis-
tribution between players. We first explain the idea of this protocol, then we see some
attacks on it and finally we propose a new secure linear protocol inspired from this one.

7.1 The Idea of the Y T P Protocol
During the first part of the protocol, the master player P1 (i.e. the one owning a com-
plete vector U) starts by self-ciphering each values ui for i ∈ [2,n], and then distributes
E1(ui) to Pi. Then, using a cryptosystem E verifying the homomorphic properties 1
and 2, each player Pi uses the public key of P1 and computes E1(ui)

viE1(−si), where
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si is a random number and vi the private input. During the next step, each Pi sends the
result back to P1. She computes the product of all received ciphertexts, to finally obtain
D1(∏

n
i=2 E1(uivi− si)) = ∑

n
i=2 uivi− si.

In the second phase of the protocol, each Pi will compute the sum of si using a se-
cure summation protocol. The authors propose to use an O

(
n2
)

secret sharing scheme
or, as a perspective, an alternative sketched in [4, § 5.1]. There, the idea is to compute
a secure sum of the randomness between players, and then send the result to the mas-
ter player. In this protocol, previous random numbers si added by each player Pi are
hidden with another random number ri. Then, the players with an even index send to
the ones with odd index the ri + si value, while the odd players send only si to the even
ones. Then, the even (respectively odd) players compute ∑s2i+1 (resp. ∑r2i+s2i). Fur-
ther exchanges, bipartite and tree based between players, allow to recover the complete
sum. Finally, P1 is able to recover ∑

n
i=2 si from one of the Pi’s, and then compute the

scalar product.

First, we analyze this approach in the following Section 7.2 and show that it is
in fact not more secure than a classical salary sum protocol [35]: a player (e.g. P2)
chooses a random number s and adds it to its private value r2. Then, it sends to the
next indexed player the cipher of r2+s, using the public key of P3 i.e. E3(r2+s). Then
after deciphering, each player adds their private input to the previous sum and sends
the new value by ciphering it using the next player’s public key. The last player sends
the result to the first one, which simply remove the random value to obtain the sum.

Second we prove that it is possible to use our novel random ring order mitigation
scheme with the latter sum. We thus also preserve both advantages, a O (n) time and
communications costs as well as security against malicious adversaries. This result-
ing protocol, Y T P-SS, is then actually somewhat dual to DSDP, as will be shown in
Section 7.3.

7.2 Attacks on Y T P Summation Protocol
In Section 5, we provided automated verification of DSDPi protocols using ProVerif.
We now aim to provide similar analysis for the summation protocol from [4] and com-
pare it to the classical salary sum protocol from [35] to clarify if the exchanges added
by the first make it more secure than the second. However, we face the exact same
modeling challenge than earlier, that is, modeling of equational theories over abelian
groups has been proven undecidable and we have to restrict our analysis to make it
feasible. Rather than providing our own hardcoded equational theories as for ProVerif,
we choose to model sums as Exclusive-OR operators which is a classic modeling prac-
tice. Exclusive-OR is indeed addition modulo two. Moreover, Exclusive-OR has the
following four properties: commutativity, associativity, unity, nilpotency. The main
difference is that an element is also its inverse, which might introduce some false at-
tacks. Nethertheless, Exclusive-OR is handled by some protocol verification tools and
is a reasonable abstraction of addition.

As shown in [29], it appears that ProVerif is barely able to handle Exclusive-OR.
Thus we use a different tool named AVISPA [3] to verify Y T P protocols. AVISPA is
a common frontend to four backends analyzers sharing the same input language. This
allows us to test modelings against the two backends that are able to handle Exclusive-
OR operators, namely Cl-Atse [38] and OFMC [6]. Again, all the associated source
files are available in the web-site: matmuldistrib.forge.imag.fr.
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Against the salary sum protocol from [35], we check the secrecy of the ri terms.
Both Cl-Atse and OFMC do not find any attack with zero or one corrupted participants.
With two corrupted participants both tools find the exact same attacks as in DSDP
protocols when the attackers are situated before and after an honest participant i. By
computing the difference of their outputs they can learn the secret value of the honest
participant: (s+∑

i+1
j=2 r j)−(s+∑

i−1
j=2 r j) = ri+ri+1 (with ri+1 known by one corrupted

player).
Against the protocol from [4], we check the secrecy of the si terms that players aim

to sum. No attack is found in absence of corrupted participant while with one, Cl-Atse
find two attacks. However after careful review, it appears that both attacks are present
due to the approximation of the sum into Exclusive-OR operators. The author of the
tool have been notified about this behavior and confirmed that current version of the
tool cannot find these attacks. Thus if there is no attack with one corrupted participant,
then the protocol from [4] has the same security than the one from [35].

Interestingly, with two corrupted participants, we find an attack on the secrecy of
all si terms, but with the two corrupted participants being in different positions for each
attack and not necessarily before and after as for the salary sum. For instance with four
players (P2 to P5) computing the sum for the master player P1, if P2 and P5 are colluding
then they can obtain the secret term s3 from P3 with the attack described in Figure 6.
According to the protocol, P2 sends r2 + s2, P3 answers with his random value r3 and
forwards the sum r2 + s2 + r3 + s3. Thus together, P2 and P5 know r2 + s2 + r3 + s3, r2,
s2, r3 and they can obtain s3.

P2 P3 P5

r2+s2 //
r3oo r2+s2+r3+s3 //

Figure 6: Attack on s3 in the sum protocol from [4]

7.3 From Y T P to Y T P-SS: a Dual Protocol to DSDP

From a global point of view, DSDP and Y T P protocols follow the same pattern: a
first step of inputs hiding and a second one of randomnesses removing (sketched in
Figure 1). However, we remark that strategies employed during the first phase are
somewhat dual. Indeed, in DSDP, the method is all-for-one whereas a one-for-all
approach is used in Y T P. The second phases are quite different, DSDP uses of a ring
topology while Y T P uses a tree-based bipartite one. Nevertheless, none of the protocols
offers security against malicious adversaries nor collusion attacks. Our idea is then to
apply the Random Ring Order (RRO) mitigation defined in Section 6.2 to obtain an a
priori threshold determining a tradeoff between performance and security.

However, instead of just applying the RRO, we start by increasing the overall effi-
ciency of the Y T P protocol. Indeed, we have shown in the previous Section 7.2 that
the summation protocol of [4] does not actually improve the security with regards to
simpler summation protocols. We therefore propose to use the simpler ones, in order
to obtain a linear communication cost in the number of players, and therefore a linear
number of encryptions during the summation phase. The obtained variant is denoted
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Y T P-SS. An example of the protocol execution with three players is illustrated in Fig-
ure 7 (detailed version of Figure 1, right), and the complete protocol is described in
Algorithm 15.

Algorithm 15 Y T P-SS protocol
Require: n ≥ 3 players, two vectors U and V such that P1 knows complete vector U ,

and each players Pi knows the component vi of V , for i = 1 . . .n;
Require: Ei (resp. Di), encryption (resp. decryption) function of Pi, for i = 1 . . .n.
Ensure: P1 knows the dot-product S =UTV .

1: for i = 2 . . .n do
2: P1 : ci = E1(ui)

3: P1
ci→ Pi

4: Pi : ri
$← Z/N1Z

5: Pi : αi = cui
i ∗E1(−ri) so that αi = E1(uivi− ri)

6: Pi :
αi→ P1

7: P1 : Sa = ∑
n
i=2 D1(αi) so that Sa = ∑

n
i=2 uivi− ri

8: P2 : s $← Z/N1Z
9: P2 : β3 = E3(r2 + s)

10: P2 :
β3→ P3

11: for i = 3 . . .n−1 do
12: Pi : ∆i = Di(βi)
13: Pi : βi+1 = Ei+1(∆i + ri)

14: Pi :
βi+1→ Pi+1

15: Pn : ∆n = Dn(βn)
16: Pn : β2 = E2(∆n + rn)

17: Pn :
β2→ P2

18: P2 : Sb = D2(β2)− s so that Sb = ∑
n
i=2 ri

19: P2 :
E1(Sb)→ P1

20: return P1 : S = SA +D1(E1(Sb))+u1v1 = ∑
n
i=1 uivi.

As in Section 5.1, we have the following Lemma 16 for the security of the protocol.

Lemma 16. By assuming the semantic security of the cryptosystem E, for n ≥ 3,
Y T PSSn is secure against one semi-honest adversary.

Proof. We suppose that the partial homomorphic cryptosystem E is semantically se-
cure. We show next that the views of players in real and ideal executions can only
be distinguished with a negligible probability. The protocol requires three different
player’s roles: the master player (owning the complete U vector), a sub-master player
(determining the random s used for computing Sb), and the remaining players. There-
fore, the proof is cut in three parts, one for each possibility of corruption. In each
part, we describe the algorithm of the simulator SimA (where A denotes the corrupted
player). This simulator generates the view of the protocol for player A, using as inputs
and random numbers the ones from A, and using as the output of the protocol what is
obtained from the TTP (Trusted Third Party) in the ideal world. We recall that proto-
cols inputs are U for P1, vi for Pi (i ∈ {2..n}), and output is S = ∑

n
i=2 uivi for P1 and

nothing for the others players. Apart from the notations used in the Protocol 15, we

22



Alice (P1) Bob (P2) Charlie (P3)

c{2,3} = E1(u{2,3})

c2
//

c3
//

α2 = cv2
2 ∗E1(−r2) α3 = cv3

3 ∗E1(−r3)
α2oo

α3oo

Sa = D1(α2)+D1(α3)

{now Sa = u2v2− r2 +u3v3− r3}

β3 = E3(r2 + s)

β3

//
∆3 = D3(β3)

β2 = E2(∆3 + r3)
β2oo

∆2 = D2(β2)

Sb = ∆2− s {now Sb = r2 + r3}
E1(Sb)oo

S = Sa +D1(E1(Sb))

{now S = u2v2 +u3v3}

Figure 7: Y T P-SS protocol to securely compute dot-product using homomorphic encryption
scheme E

define also: γ = E1(Sb), U = {ui}2≤i≤n, A = {αi}2≤i≤n, B = {βi}2≤i≤n, C = {ci}2≤i≤n.
For a value X obtained from a real execution, we denote by X ′ the simulated one.

P1 is corrupted: During a protocol execution, P1 will obtain the following view:
ViewP1 = {U,C,A,B,Sa,Sb,S}, from her inputs, output and leaked values. Using the
U vectors as input, the simulator SimP1 provides ViewSimP1

= {U,C′,A′,B′,S′a,S
′
b,S}.

First, it computes ∀i ∈ {2..n} : c′i = E1(ui). Then, by sampling n−1 random numbers
wi, SimP1 computes α′i = E1(wi) and deduces S′a = ∑

n
i=2(wi). B′ values are obtained by

ciphering new random numbers zi using the public key of the ith players i.e. β′i = Ei(zi).
Finally, from the output S of the TTP, SimP1 returns S′b = S− S′a. Therefore, we have
ViewSimP1

= {U,C′,A′,B′,S′a,S
′
b,S}. Both the semantic security of E and the addition

of random numbers thus imply the indistinguishability of ViewP1 and ViewSimP1
.

Pi, i ∈ {3..n} is corrupted: A real protocol execution gives to Pi the view ViewPi =
{vi,ri,C,A,B,∆i,γ}. Knowing vi and ri, we describe the algorithm executed by SimPi to
generate ViewSimPi

= {vi,ri,C′,A′,B′,∆′i,γ
′}. To simulate C′, the simulator picks n−1

random numbers zi and ciphers them using the public key of Pi. All the n−1 values of
B but βi+1 are simulated using new random values wi ciphered with the Pi’s key. Then,
∆′i is equal to wi, and β′i+1 = Ei+1(wi + ri) if i ≤ n−1 or β′2 = E2(wn + rn) otherwise.
For all α′j values, with j 6= i, SimPi ciphers again random values ti. α′i is obtained by
computing: α′i = cvi

i E1(−ri), since the simulator has access to vi and ri. For the γ′

value, SimPi ciphers another random value with the public key of P1. By applying the
previous arguments, ViewPi is indistinguishable from ViewSimPi

.
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P2 is corrupted: Finally, we describe the algorithm of Sim2 providing ViewSimP2
=

{v2,r2,s,C′,A′,B′,∆′2,S
′
b,γ
′}, where v2 is the input of P2 and r2 as well as s are random

numbers chosen by P2. The only difference between Pi (with i > 2) and P2 is during
the summation round, where P2 provides the random number s and learns Sb from the
protocol execution. Then, we use the same construction as for the previous simulator
SimPi , i ∈ {3..n} to provide a partial view. In order to simulate the S′b value, the simula-
tor computes S′b = ∆′2− s, using the ∆′2 obtained in the partial view. Finally, γ′ is equal
to E1(S′b). As previously, indistinguishability is obtained from the addition of random
numbers and the semantic security of E.

Note that, in the case where n = 3, P2 is able to deduce the third player’s random
value from a real protocol execution by computing r3 = ∆2 − s. In the ideal case,
adversary gets r′3 = ∆′2− s. Since r3 is a random value, P2 cannot make the distinction
with r′3.

Remark 17. In the simulation paradigm, the sub-protocol of summation is secure.
However, in the case where only two players are involved, P1 is able to retrieve the
secret value r2 of the other player: therefore the protocol is not safe. Nevertheless, in
Y T P-SS3 the summation phase is only applied on random values, so that the knowledge
of r3 by P2 still preserves the safety property.

Now for attacks, we used again automated verifications alongside with the above
handwritten proofs. As for DSDP, we use the ProVerif tool to handle homomor-
phic equational theories. Surprisingly it appears that Y T P-SS seems more secure than
DSDP, when used without random ring order mitigation. In both protocols, ProVerif
finds an attack when both Alice and two other participants Pi−1 and Pi+1 are corrupted.
Then they can obtain the vi secret from Pi. In the case of DSDP, ProVerif was able
to find this attack with only Alice (P1) and Charlie (P3). Together they were able to
retrieve v2 from P2 since Alice is also the player right before P2 as presented at the end
of Section 5.2. However, according to ProVerif, this attack is not possible on Y T P-SS.
This can be intuitively explained since Charlie would obtain r + s instead of r alone
from Bob when performing the salary sum. Thus we can conclude according to our ex-
periments with ProVerif that Y T P-SS provides more security than DSDP. Now, when
used in parallel, that is in groups of 3 players, the security is identical.

In terms of efficiency, Y T P-SS and DSDP are both linear, with a slight advantage
for Y T P-SS: in the second phase, namely the salary sum, a non-homomorphic encryp-
tion can be used. Figure 8 shows that this is indeed the case with Paillier encryption
for the whole DSDP, whereas Paillier encryption is used in the first phase of Y T P-SS
and plain RSA-OAEP in the second phase.

Using this new version of Y T P-SS, we can apply the Random Ring Order mitiga-
tion scheme of Section 6.2, in the exact same way as in DSDP. The average number
of runs required to prevent malicious attacks is still given by Theorem 13. Indeed, in
a parallel setting, we just shown in Section 7.2 that any honest player is also safe if he
can be placed with a single other honest player, in at least one of the random ring runs.
In consequence, we obtain the same security trade-offs as in Section 6.2.
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8 Secure Multiparty Computation of Trust in Public-
key Infrastructures

We now come back to the aggregation of trust. As sketched in introduction, the first
step is to reduce the computation of trust to that of powers of the adjacency matrix. The
latter can then be performed by parallel dot-products.

We first recall next, in Section 8.1, the formal definitions of the sequential and par-
allel aggregations of trust. Then we show, in Section 8.2, that powers of this adjacency
matrix can be evaluated privately in a distributed manner, provided than one disposes
of an homomorphic cryptosystem satisfying the Properties (1) and (2). Eventually, in
Section 8.3, we adapt the protocol of Section 4 to the evaluation of trust values.

8.1 Aggregation of Trust
For us, as in [28, 27, 20], trust is represented by a triplet, (trust, distrust, uncertainty)
for the proportion of experiences proved, or believed, positive; the proportion of ex-
periences proved negative; and the proportion of experiences with unknown character.
As uncertainty = 1− trust−distrust, it is sufficient to express trust with two values as
〈trust,distrust〉. In the following, we thus consider that the trust values are given as a
pair 〈a,b〉 ∈ D2, for D a principal ideal ring.

Consider Alice trusting Bob with a certain trust degree, and Bob trusting Charlie
with a certain trust degree. The sequential aggregation of trust formalizes a kind of
transitivity to help Alice to make a decision about Charlie, that is based on Bob’s
opinion.

Definition 18 (Sequential aggregation of trust). for three players P1, P2 and P3, where
P1 trusts P2 with trust value 〈a,b〉 ∈ D2 and P2 trusts P3 with trust value 〈c,d〉 ∈ D2
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the associated sequential aggregation of trust is a function F : D2×D2 → D2, that

computes the trust value over the trust path P1
〈a,b〉→ P2

〈c,d〉→ P3 as

〈a,b〉F〈c,d〉= 〈ac+bd,ad +bc〉.

Similarly, from Alice to Charlie, there might be several ways to perform a sequen-
tial aggregation (several paths with existing trust values). Therefore it is also possible
to aggregate these parallel paths with the same measure, in the following way:

Definition 19 (Parallel aggregation of trust). For two disjoint paths P1
〈a,b〉→ P3 and

P1
〈c,d〉→ P3, the associated parallel aggregation of trust is a function z : D2×D2→ D2,

that computes the resulting trust value as:

〈a,b〉z〈c,d〉= 〈a+ c−ac,bd〉.

Note that z is a commutative operator, since 〈a,b〉z〈c,d〉 = 〈a+ c−ac,bd〉 =
〈c+a− ca,db〉= 〈c,d〉z〈a,b〉. We prove the following Lemma.

Lemma 20. 〈a,b〉 is invertible for z if and only if (b is invertible in D) and (a = 0 or
a−1 is invertible).

Proof. As 〈a+ 0− a.0, b.1〉=〈a,b〉, we have that 〈0,1〉 is neutral for z. Then, for b
invertible, if a = 0, then 〈0,b−1〉 is an inverse for 〈0,b〉. Otherwise, for a−1 invertible,

〈a(a−1)−1,b−1〉z〈a,b〉= 〈a,b〉z〈a(a−1)−1,b−1〉
= 〈a+a(a−1)−1−a2(a−1)−1,bb−1〉
= 〈0,1〉.

Similarly, if 〈a,b〉z〈c,d〉= 〈0,1〉, then bd = 1 and b is invertible. Then also (a−1)c=
a. Finally if a 6= 0 and a−1 is a zero divisor, there exists λ 6= 0 such that λ(a−1) = 0,
thus λ(a−1)c = 0 = λa, but then λ(a−1)−λa =−λ = 0. As this is contradictory, the
only possibilities are a = 0 or a−1 invertible.

8.2 Multi-party Private Aggregation
For E an encryption function, we define the natural morphism on pairs, so that it can
be applied to trust values:

E(〈a,b〉) = 〈E(a),E(b)〉. (6)

We can thus extend homomorphic properties to pairs so that the parallel and se-
quential aggregation can then be computed homomorphically, provided that one entry
is in clear.

Lemma 21. With an encryption function E, satisfying the homomorphic Properties (1)
and (2), we have:

Mul(E (〈a,b〉) ;〈c,d〉) = E (〈a,b〉F〈c,d〉)
= 〈E(a)cE(b)d ,E(a)dE(b)c〉

Add(E (〈a,b〉) ;〈c,d〉) = E (〈a,b〉z〈c,d〉)
= 〈E(a)E(c)E(a)−c,E(b)d〉

Moreover, those two functions can be computed on an enciphered 〈a,b〉, provided that
〈c,d〉 is in clear.
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Proof. From the homomorphic properties of the encryption functions, we have the
following equalities: E(a)cE(b)d = E(ac+bd), E(a)dE(b)c = E(ad +bc), as well as
E(a)E(c)E(a)−c = E(a+ c+ a(−c)) and E(b)d = E(bd). For the computation, both
right hand sides depend only on ciphered values E(a), E(b), and on clear values c and d
Note that E(c) can be computed with the public key, from c.

This shows, that in order to compute the aggregation of trust privately, the first step
is to be able to compute dot-products privately.

8.3 Multi-party Private Trust Evaluation
We now show how to fully adapt the protocol of Section 4 to the evaluation of trust
values with parallel and sequential aggregations:

Corollary 22. The protocol DSDP of Algorithm 2 can be applied on trust values,
provided that the random values ri are invertible for z.

Proof. • ui, vi, ri, ci, αi, βi, ∆i, γ are now couples;

• Encryption and decryption (E(vi), D(βi), E(∆i), E(γ), etc.) now apply on cou-
ples, using the morphism E(〈a,b〉) = 〈E(a),E(b)〉;

• αi is E((uiFvi)zri) = Add(Mul(E(vi);ui);ri), and can still be computed by P1,
since ci = E(vi) and ui and ri are known to him;

• Similarly, βi = E(αiz∆i) = Add(E(αi);∆i).

• Finally, as z is commutative, S is recovered by adding the inverses for z of the
ri.

From [20, Definition 11], the d-aggregation of trust is a dot-product but slightly
modified to not include the value u1v1. Therefore at line 3, in the protocol of Algo-
rithm 9, it suffices to set s to the neutral element of z (that is s← 〈0,1〉, instead of
s← ai, jbi, j).

There remains to encode trust values that are proportions, in [0,1], into D= Z/NZ.
With n participants, we use a fixed precision 2−p such that 2n(2p+1) < N ≤ 2n(2(p+1)+1)

and round the trust coefficients to bx2pc mod N from [0,1]→D. Then the dot-product
can be bounded as follows:

Lemma 23. If each coefficient of the ui and vi are between 0 and 2p− 1, then the
coefficients of S =zn

i=1(uiFvi) are bounded by 2n(2p+1) in absolute value.

Proof. For all u,v, the coefficients of (uFv) are between 0 and (2p− 1)(2p− 1) +
(2p− 1)(2p− 1) = 22p+1− 2p+2 + 2 < 22p+1− 1 for p a positive integer. Then, by
induction, when aggregating k of those with z, the absolute values of the coefficients
remain less than 2k(2p+1)−1.

Therefore, with N an 2048 bits modulus and n≤ 4 in the ESDP protocols of Algo-
rithm 9, Lemma 23 allows a precision close to 2−255 ≈ 10−77.

In conclusion, we provide an efficient and secure protocol DSDPn to securely com-
pute dot products (against semi-honest adversary) in the MPC model, with unusual data
division between n players. It can be used to perform a private matrix multiplication
and also be adapted to securely compute trust aggregation between players. As shown
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in [27] the calculus of trust can directly be applied to public-key infrastructures.

Thus, for instance, our matrix-multiplication protocols can be used to compute the
trust aggregation between certification authorities (CA) in public-key infrastructures
(PKI). In [22], they identify more than 1800 certificates for these entities, controlled
by around 700 different organizations. Thus, we ran a parallel execution of Y T P-SS in
the manner of PDSMMn (see Section 6) with 700 players. With a simple trust metric,
represented by only trust and uncertainty, we needed less than 430 seconds to compute
the full 700×700 private multiparty matrix multiplication. In the end, each certification
authorities gets a global trust view of their neighbors in the network, using the other
authorities’ recommendations in about 7 minutes. A few more iterations might be
needed to get a more accurate view, but in any case this shows that frequently updating a
trust evaluation via a distributed and private matrix multiplication is nowadays practical
for a large number of certification authorities.

9 Conclusion and Perspective
In this article, we provide two dual protocols DSDP and Y T P-SS, to securely compute
dot products (against semi-honest adversaries) in the MPC model, with unusual data
division between n players. Both protocols complexity in communications and com-
putations are bounded by O (n). In parallel, they require less than five communication
steps. They also have a computational depth bounded by O (logn) and can be used
to perform a private matrix multiplication. The complexity bounds of the different
protocols developed in this paper are recalled in Table 1. We give the overall volume
of communication, from cubic in [17] to quadratic (§ 3) and then linear for DSDP and
Y T P-SS. We also give the minimal number of rounds required to exchange this amount
of data, as well as if Paillier-like encryption (as opposed to Benaloh-like encryption)
can be used within the protocols. For DSDP, the number of rounds can be decreased
from linear to constant, using the parallel method of Alg. 9, in the honest-but-curious
setting (H). Similarly, Y T P-SS has a linear number of rounds which can be reduced
to constant, using the parallel method of Alg. 9. Then, in the malicious setting (M),
the security of both schemes can be enhanced with the random-ring mitigation scheme,
either on average or in the worst-case (Algorithm 11, full “wiretap” variant).

Table 1: Communication complexity bounds
Protocol Volume Rounds Paillier Security

MPWP O
(
n3) O (n) 7 ?

P-MPWP (§ 3) n2+o(1) O (n) 3 ?

Alg. 2 (DSDPn) n1+o(1) O (n) 3 H
Alg. 9 (PDSMMn) n1+o(1) 5 3 H

Alg. 15 (Y T P-SSn) n1+o(1) O (n) 3 H
Alg. 15 (parallel) n1+o(1) 5 3 H

Alg. 11 over Alg. 9 or Alg. 15 (Average) n1+o(1) 5 3 M
Alg. 11 over Alg. 9 or Alg. 15 (Wiretap) n2+o(1) ln

( 1
ε

)
5 3 M

These protocols can also be adapted to securely compute trust aggregation between
players, defined on an unclassical matrix product, where base operations are replaced
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with ones defined on specific monoids.
Then, to further improve running times we plan to see if it is possible to replace

Paillier’s encryption with Schmidt-Samoa and Takagi’s scheme that can combine the
advantages of Benaloh-like schemes and those of Paillier-like ones. Another line of
research would be to be able to use fast matrix multiplication instead. There, exist-
ing practical algorithms work recursively, in blocks, and with pre- and post-additions.
Therefore the players would have to enter some private addition schemes and deal with
recursion.

Besides, we used automatic protocol verification tools to prove the security of
the protocols against semi-honest adversaries and find attacks against malicious ones.
Then, we developed countermeasures for each attacks discovered by the tool. In par-
ticular, we use proofs of knowledge checks and a random ring strategy which reduces
drastically the probability of attacks when the protocol is repeated, even a small number
of times.

Our random ring order mitigation scheme is actually quite generic and allows us to
ensure the security against a fixed number of malicious participants. One possible ex-
tension would be to consider more powerful intruders, for instance adaptative intruders
that can corrupt some participants only during some phases of the protocols and ac-
cording to the chosen random ring order. In this case, we need to choose the random
ring order in a more secure manner in order to prevent the intruder from anticipating it.
Then, one possible solution would be to use a certified time stamp signed by a trusted
time-stamping authority in the computation of the random ring. With this method the
intruder cannot anticipate the random ring order and should not be able to mount an
adaptative attack.
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