
Formally Verifying Flow Integrity Properties in Industrial Systems∗

Jannik Dreier3, Maxime Puys1, Marie-Laure Potet1, Pascal Lafourcade2 and Jean-Louis Roch1

(1) Verimag, University Grenoble Alpes, Saint-Martin-d’Hères, France
firstname.lastname@univ-grenoble-alpes.fr

(2) LIMOS, University Clermont Auvergne, Campus des Cézeaux, Aubière, France
pascal.lafourcade@uca.fr

(3) LORIA, University of Lorraine, INRIA, CNRS, France
jannik.dreier@loria.fr

Keywords: Security protocols, industrial systems, SCADA, symbolic model, automated verification, flow integrity.

Abstract: In contrast to other IT systems, industrial systems often do not only require classical properties like data
confidentiality or authentication of the communication, but have special needs due to their interaction with
physical world. For example, the reordering or deletion of some commands sent to a machine can cause the
system to enter an unsafe state with potentially catastrophic effects. To prevent such attacks, the integrity of
the message flow is necessary. We provide a formal definition of Flow Integrity. We apply our framework to
two well-known industrial protocols: OPC-UA and MODBUS. Using TAMARIN, a cryptographic protocol
verification tool, we confirm that most of the secure modes of these protocols ensure Flow Integrity given a
resilient network. However, we also identify a weakness in a supposedly secure version of MODBUS.

1 Introduction

Industrial systems are often used to monitor and
control a physical process such as energy production
and distribution, water cleaning or transport systems.
They are often simply called Supervisory Control And
Data Acquisition (SCADA) systems. Due to their inter-
action with the real world, the safety of these systems
is critical and any incident can potentially harm hu-
mans and the environment. Since the Stuxnet worm in
2010 (Langner, 2011), such systems increasingly face
cyberattacks caused by various intruders, including
terrorists or enemy governments. As the frequency
of such attacks is increasing, the security of SCADA
systems becomes a priority for governmental agencies,
e.g. (Stouffer et al., 2011) for the NIST or (ANSSI,
2012) for the ANSSI.

While security objectives for IT systems are usu-
ally confidentiality, integrity and availability (CIA), in-
dustrial systems put a particular emphasis on integrity
and availability. One property required by such sys-
tems is that all sent commands are received in the same
order by the industrial machine, which is part of what
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we call Flow Integrity. This property is crucial in in-
dustrial systems since most of commands require the
system to be in a specific state when they are launched.
For instance, if an electric device requires to be unpow-
ered to be manipulated, the shutdown command must
arrive before any manipulation command. Inverting
them could cause the device, along with its environ-
ment, to be damaged.

Automated protocol verification has been per-
formed during the past twenty years and multiple
efficient tools such as ProVerif (Blanchet, 2001),
AVISPA (Armando et al., 2005), Scyther (Cremers,
2008) or TAMARIN (Meier et al., 2013) have been de-
veloped. However, they focused on cryptographic pro-
tocols for Internet such as TLS (Cremers et al., 2016)
or special applications such as electronic voting (Kre-
mer and Ryan, 2005) or auctions (Dreier et al., 2013).
The Flow Integrity property differs from the properties
usually verified in these classical protocols. For exam-
ple, we want to ensure that messages are delivered (a
liveness property), which requires a resilient channel.
As Internet is not resilient, resilient channels are diffi-
cult to model in most tools that were designed to verify
Internet protocols. Moreover, the order of messages
is ensured in most Internet protocols as the messages



have different formats, so reordering the messages
simply aborts the protocol. In the context of industrial
systems most of the protocols are used to transport
commands, meaning that the messages always have
the same format, rendering the ordering crucial. In
order to ensure the correct ordering of the messages,
most of the transport protocols including industrial
ones use timestamps, counters and sequence numbers.
These solutions are notoriously difficult to model and
verify using actual tools due to some theoretical limita-
tions of the tools that often lead to non-termination. In
order to face these limitations, we use the verification
tool TAMARIN (Meier et al., 2013), that allows us to
model counters and resilient channels that can build on
previous work concerning the verification of liveness
properties (Backes et al., 2017).

Contributions: To the best of our knowledge, the
Flow Integrity property has not yet been formalized
in the context of industrial protocols. Hence, we have
two main contributions:
• We provide a formal definition of Flow Integrity in

industrial control systems; a property that ensures
that all messages are received without alteration,
and in the same order as they were sent. We also
define weaker properties, including Non-injective
and Injective Message Authenticity, which ignore
the ordering of messages but ensure that all re-
ceived messages are unmodified (and cannot be
duplicated in the injective case). We also define
the corresponding Non-injective and Injective Mes-
sage Delivery properties, making sure that all mes-
sages are delivered (and in the injective case the
correct number of times).

• We study Flow Integrity for two real industrial pro-
tocols: MODBUS and OPC-UA. Using TAMARIN,
we apply our framework to multiple versions of
these protocols and discover a weakness in a ver-
sion of MODBUS.
Outline: In Section 2, we discuss related work.

Then in Section 3, we explain our definitions of the
different properties, and in Section 4 how we modeled
these properties with the TAMARIN prover. In Sec-
tion 5, we apply the verification of our property to the
MODBUS and OPC-UA industrial protocols. Finally,
we conclude in Section 6.

2 Related Work

The notion of integrity can vary a lot depending
on the context. A generic definition could state that
integrity is the maintenance and assurance of the accu-
racy and consistency of some data over its life-cycle.
For instance, this notion has been applied in 1987, by

Clark and Wilson in (Clark and Wilson, 1987). They
proposed an access control model able to specify and
analyze integrity policies. In such model, data alter-
ation is restricted to those authorized. In 1998 in a dif-
ferent field, Heintze et. al. (Heintze and Riecke, 1998)
analyzed the consistency of the values of variables dur-
ing a program execution. Within their framework, they
are able to ensure properties relying on integrity such
as non-interference (i.e. the modification of a variable
should not affect another). Again in a different field, in
2005, Umezawa et. al. (Umezawa and Shimizu, 2005)
proposed a methodology to ensure that the description
of hardware components (such as VHDL code) re-
spects some temporal logic properties such as invalid
states for state machines or invalid values for coun-
ters. Their approach relies both on model-checking
and simulation.

In this paper, we studied the integrity of messages
exchanged over a potentially insecure network. Tradi-
tionally, message integrity is used to detect accidental
changes using error detection codes such as Cyclic
Redundancy Checks (CRC). However, such detection
codes do not protect against a malicious intruder since
he can easily recalculate CRCs of the messages he
changes. Similarly the TCP protocol protects against
an accidental reordering of messages, but not against
a malicious intruder that also modifies the sequence
numbers used for this purpose. To guarantee message
integrity in presence of malicious intruders, crypto-
graphic primitives are needed, such as digital signa-
tures or Message Authentication Codes (MAC).

Early works concerning the security of indus-
trial protocols focused on discussing the security
properties supported or not by protocols. In 2004,
Clarke et. al. (Clarke et al., 2004) studied the security
of DNP3 (Distributed Network Protocol) and ICCP
(Inter-Control Center Communications Protocol). In
2005, Dzung et. al. (Dzung et al., 2005) surveyed the
security in SCADA systems including informal anal-
ysis on the security properties offered by various in-
dustrial protocols: OPC (Open Platform Communica-
tions), MMS (Manufacturing Message Specification),
IEC 61850, ICCP and EtherNet/IP. In 2006, authors
of the technical documentation of OPC-UA (OPC Uni-
fied Architecture) detailed the security measures of the
protocol. In 2015, Wanying et. al. (Wanying et al.,
2015) summarized the security offered by MODBUS,
DNP3 and OPC-UA. None of these works give any
formal proof of security properties on the protocols.

In more recent works, formal analyses started to
appear for industrial protocols. In (Patel and Yu,
2007) the authors proposed a formal verification of
DNP3 using OFMC (Basin et al., 2003, Open-Source
Fixed-Point Model-Checker) and SPEAR II (Saul and



Hutchison, 1999, Security Protocol Engineering and
Analysis Resource). In (Dutertre, 2007), they de-
tailed formal specifications of MODBUS developed
using PVS, a generic theorem prover in order to help
proving the consistency of an implementation with
the standards. In (Fovino et al., 2009), the authors
proposed a secure version of MODBUS relying on
well-known cryptographic primitives such as RSA
and SHA2. In (Hayes and El-Khatib, 2013), they
designed another secure version of the MODBUS pro-
tocol using hash-based message authentication codes
and built on SCTP (Stream Transmission Control Pro-
tocol). In (Bratus et al., 2016), authors provided a
Deep-Packet Inspection tool to verify syntactic correct-
ness of DNP3 packets using the Hammer tool (Pat-
terson and Hirsch, 2014). In (Puys et al., 2016), the
authors formally verified secrecy and authentication
properties of OPC-UA handshake protocols using the
ProVerif tool (Blanchet, 2001). However, none of
these works formally define or verify Flow Integrity.

In general – outside industrial systems – for-
mal verification of authentication properties (Lowe,
1997) is common. As shown by (Lafourcade and
Puys, 2015), this property is supported by many
tools such as AVISPA (Armando et al., 2005),
ProVerif (Blanchet, 2001), Scyther (Cremers, 2008)
and TAMARIN (Schmidt et al., 2012). However, our
definition of integrity goes beyond the usual authen-
tication properties, as we also consider the ordering
of the messages and ensure their delivery (a liveness
property), which is difficult to express and verify in
most of these tools. We chose TAMARIN to build on
previous work (Backes et al., 2017) concerning the
modeling of resilient channels and the verification of
liveness properties.

3 Defining Authenticity, Delivery
and Integrity

Notations: In our definitions, we talk about se-
quences of messages. Let S∗ denote the set of se-
quences over a set S. For a sequence s, we write si
for its i-th element, |s| for its length, and idx(s) =
{1, . . . , |s|} for the set of its indices. We use [] to denote
the empty sequence, [s1, . . . ,sk] to denote the sequence
s of length k, and s · s′ to denote the concatenation
of the sequences s and s′. We say that the sequence
[s1 . . .sn] is a subchain of the sequence [r1 . . .rm] if
there exist sequences2 z0, . . . ,zn such that:

z0 · [s1] · z1 · [s2] · . . . · [sk−1] · zn−1 · [sn] · zn = [r1 . . .rm]

2Note that zi can be the empty sequence.

We denote by set(S) the unordered set that con-
tains only once each element of the sequence S, and
by multiset(S) the unordered multiset that contains the
elements of S. To distinguish operations on multisets
from operations on sets we use the superscript ]: for
example ∪ denotes set union, whereas ∪] denotes mul-
tiset union. We use regular set notation {·} for sets and
multisets whenever it is clear from the context whether
it is a set or a multiset.

In our model, the messages consist of terms. Let
ΣFun be a finite signature of functions of the set Fun
and V be a set of variables, TΣFun(V ) denotes the set
of terms built using functions from ΣFun and vari-
ables from V . Unlike classical cryptographic proto-
cols, which are a finite sequences of messages, we
study transport protocols that aim at transporting com-
mands or data from a party to another, resulting in
potentially infinite sequences of messages. We call the
transported commands the payload of the message, in
contrast to, e.g., protocol headers and other additional
values added by the protocol. To be able to identify
the payload inside a larger protocol message, we use
types. We assume that this part of the message is of
type D for data, and the rest of the message has other
types (e.g. H for hash or S for signatures).

Definitions & Intruder Model: We suppose a
set of agents that exchange messages over a network
which can be (partly3) controlled by a Dolev-Yao in-
truder (Dolev and Yao, 1981). A classical Dolev-Yao
intruder has access to all messages on the public net-
work and can modify, inject, delete or delay them.
He is however limited by the cryptographic primitives
used: he can only decrypt a ciphertext or forge a sig-
nature if he knows the corresponding keys. This is
known as the perfect cryptography assumption.

We define Flow Integrity for the flow of messages
between two agents A and B. More precisely, we
define the integrity of message payload, i.e., we only
aim at protecting the contents of the message, as this
is what is required by the applications in industrial
systems. This is modeled by syntactic subterms of
type D (for data) in the messages. We restrict our
integrity definitions to the payload only as we can
have false attacks otherwise. For example, consider
a protocol that sends each message together with a
signature on the message, and a random value. The
message cannot be modified due to the signature, but
the random value is unprotected. If we considered the
random value in our definitions the protocol would
not ensure any kind of integrity, although the payload
actually cannot be modified.

3The degree of control by the intruder will depend on the
type of network and the channel hypotheses.



Definition 1. Let SA,B,D be the sequence that contains
the subterms of type D of all messages sent by agent
A to agent B, and the sequence RA,B,D contains the
subterms of type D of all messages received by agent
B from A.

For example, given a protocol that sends the mes-
sage m of type D together with its hash h(m) of type H,
SA,B,D only contains the messages, and not the hashes.
Since A might not only send messages to B but also to
another agent C, and B might receive messages from
A and E, we define the ordered sequence of messages
that A sends to B, and the ordered sequence of mes-
sages that B received from A.

Note that we understand the notions of origin and
destination from the agents perspective, i.e., a message
m is in RA,B,D if B believes that it came from A. Simi-
larly, a message m that A wanted to send to B, but was
received by C, is still in SA,B,D.

We now define several notions of integrity, authen-
ticity and delivery. We have three levels of integrity,
authenticity and delivery, where at each level integrity
is defined as the conjunction of the corresponding au-
thenticity and delivery properties. Intuitively, the au-
thenticity properties ensure that message have not be
altered during transmission, and the delivery properties
ensure that messages are not lost.

The first notion of authenticity requires that all re-
ceived messages were sent by the sender, but messages
can be lost or duplicated.

Property 1. A protocol ensures Non-Injective Mes-
sage Authenticity (NIMA) between sender A and re-
ceiver B for data D if set(RA,B,D)⊆ set(SA,B,D).

It does only ensure that messages are unmodified,
but not that they are actually delivered. For this, we
define the corresponding delivery property.

Property 2. A protocol ensures Non-Injective Mes-
sage Delivery (NIMD) between sender A and receiver
B for data D if set(RA,B,D)⊇ set(SA,B,D).

Note that message delivery is difficult to achieve
using an insecure asynchronous network such as In-
ternet, but industrial systems often use special (real-
time) networks with stronger channel guarantees such
as Parallel Redundancy Protocol (PRP) and High-
availability Seamless Redundancy (HSR) (IEC-62439,
2016). Taking the above properties together, we obtain
Non-Injective Message Integrity.

Property 3. A protocol ensures Non-Injective Mes-
sage Integrity (NIMI) between sender A and receiver
B for data D if set(RA,B,D) = set(SA,B,D).

To ensure that messages cannot be duplicated, we
have Injective Message Authenticity and Injective Mes-
sage Delivery.

Property 4. A protocol ensures Injective Message
Authenticity (IMA) between sender A and receiver B
for data D if multiset(RA,B,D)⊆multiset(SA,B,D).

Property 5. A protocol ensures Injective Message
Delivery (IMD) between sender A and receiver B for
data D if multiset(RA,B,D)⊇multiset(SA,B,D).

Both properties can be verified at the same time by
checking Injective Message Integrity.

Property 6. A protocol ensures Injective Message
Integrity (IMI) between sender A and receiver B for
data D if multiset(RA,B,D) = multiset(SA,B,D).

Again it is easy to see that a protocol ensuring
Injective Message Integrity also ensures Injective Mes-
sage Delivery and Injective Message Authenticity, and
that vice versa a protocol ensuring Injective Message
Delivery and Injective Message Authenticity also en-
sures Injective Message Integrity.

Injective Message Integrity ensures that all mes-
sages are delivered, and not duplicated, but they can
still be reordered. This is prevented by Flow Authen-
ticity and Flow Delivery.

Property 7. A protocol ensures Flow Authenticity
(FA) between sender A and receiver B for data D if
RA,B,D is a subchain of SA,B,D.

Property 8. A protocol ensures Flow Delivery (FD)
between sender A and receiver B for data D if SA,B,D
is a subchain of RA,B,D.

Both properties can be verified at the same time
by checking Flow Integrity, which corresponds to the
property one would like to achieve in real systems.

Property 9. A protocol ensures Flow Integrity (FI)
between sender A and receiver B for data D if SA,B,D =
RA,B,D.

Again it is easy to see that a protocol ensuring
Flow Integrity also ensures Flow Delivery and Flow
Authenticity, and that vice versa a protocol ensuring
Flow Delivery and Flow Authenticity also ensures
Flow Integrity.

Note that a protocol ensuring Flow Integrity also
ensures Injective Message Integrity, and that a protocol
ensuring Injective Message Integrity also ensures Non-
Injective Message Integrity (and analogously for the
authenticity and delivery properties). This is summed
up in Figure 1.

Moreover, if a protocol ensures either Flow Au-
thenticity and Injective Message Delivery, or Flow
Delivery and Injective Message Authenticity, this is
sufficient to ensure Flow Integrity, as the following
Theorem 1 shows.

Theorem 1. A protocol that ensures Flow Delivery
and Injective Message Authenticity also ensures Flow
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Figure 1: Relationship of our notions: A⇒ B if a protocol
ensuring A also ensures B.

Integrity (FD∧ IMA⇒ FI). Similarly, a protocol that
ensures Flow Authenticity and Injective Message De-
livery, also ensures Flow Integrity (FA∧ IMD⇒ FI).

Proof. Let [s1, . . . ,sn] = SA,B,D and [r1, . . . ,rm] =
RA,B,D. Suppose that a protocol ensures Flow Delivery
and Injective Message Authenticity, i.e. we have that
SA,B,D is a subchain of RA,B,D, and multiset(RA,B,D)⊆
multiset(SA,B,D). Moreover, as any protocol ensuring
Flow Delivery also ensures Injective Message Deliv-
ery, we have multiset(RA,B,D)⊇ multiset(SA,B,D), and
thus multiset(RA,B,D) = multiset(SA,B,D).

This means that n = m, i.e. both sequences have
the same length. By the definition of subchains we
have that there exist sequences z0, . . . ,zn such that z0 ·
[s1] · z1 · . . . · zn−1 · [sn] · zn = [r1 . . .rm]. As n = m, we
have that [s1, . . . ,sn] = [r1, . . . ,rn], which is what we
wanted to show.

The second proof is similar.

4 The TAMARIN prover

We now recall the syntax and semantics of labeled
multiset rewriting rules, which constitute the input lan-
guage of the TAMARIN prover (Schmidt et al., 2012).

4.1 Introducing the TAMARIN prover

In TAMARIN, equations are used to specify proper-
ties of functions, where an equation over the signa-
ture ΣFun is an unordered pair of terms s, t ∈ TΣFun(V ),
written s ' t. An equational presentation is a pair
E = (ΣFun;E) of a signature ΣFun and a set of equa-
tions E. The corresponding equational theory =E is
the smallest ΣFun-congruence containing all instances
of the equations in E. We often leave the signature
ΣFun implicit and identify the equations E with the
equational presentation E . Similarly, we use =E for
the equational theory =E . We say that two terms s and
t are equal modulo E iff s =E t. We use the subscript
E to denote the usual operations on sets, sequences,
and multisets where equality is modulo E instead of
syntactic equality. For example, we write ∈E for set
membership modulo E.

Example 1. To model MACs, let ΣFun be the signature
consisting of the functions mac(·, ·) and veri f y(·, ·, ·)
together with the equation

veri f y(mac(x,k),x,k)' true.

In TAMARIN any system is modeled with multi-
set rewrite rules. These rules manipulate multisets
of facts which model the current state of the system,
with terms as arguments. Formally, given a signature
ΣFun and a (disjoint) set of fact symbols ΣFact, we de-
fine Σ = ΣFun ∪ΣFact, and we define the set of facts
as F = {F(t1, . . . , tn)|ti ∈ TΣFun ,F ∈ ΣFact of arity n}.
We assume that ΣFact is partitioned into linear and per-
sistent fact symbols; a fact F(t1, . . . , tn) is called linear
if its function symbol F is linear, and persistent if F
is persistent. Linear facts can only be consumed once,
whereas persistent facts can be consumed as often as
needed. In practice, messages and protocol state facts
are usually modeled as linear facts, whereas the in-
truder knowledge or, e.g. long term keys are stored
using persistent facts. Facts are said to be ground if
they only contain ground terms. We denote by F ] the
set of finite multisets built using facts from F , and by
G ] the set of multisets of ground facts.

The system’s possible state transitions are mod-
eled by labeled multiset rewrite rules. A labeled
multiset rewrite rule is a tuple (id, l,a,r), written
id : l−−[ a ]→r, where l,a,r ∈ F ] and id ∈ I is a
unique identifier. Given a rule ri = id : l−−[ a ]→r,
name(ri) = id denotes its name, prems(ri) = l its
premises, acts(ri) = a its actions, and concs(ri) = r
its conclusions. Finally, rules are said to be ground if
they only contain ground facts, and ginsts(R) denotes
the ground instances of a set R of multiset rewrite
rules, lfacts(l) is the multiset of all linear facts in l,
and pfacts(l) is the set of all persistent facts in l. We
use mset(s) to highlight that s is a multiset, and we use
set(s) for the interpretation of s as a set, even if it is a
multiset.

The semantics of a set of multiset rewrite rules
P are given by a labeled transition relation →P ⊆
G ]×G ]×G ], defined by the transition rule:

ri = id : l−−[ a ]→r ∈E ginsts(P)
lfacts(l)⊆] S pfacts(l)⊆ S

S
set(a)−−−→P ((S\] lfacts(l))∪] mset(r))

Note that the initial state of a labeled transition system
derived from multiset rewrite rules is the empty set
of facts /0. Each transition transforms a multiset of
facts S into a new multiset of facts, according to the
rewrite rule used. Moreover each transition is labeled
by the actions a of the rule. These labels are used to
specify security properties as explained below. Since
we perform multiset rewriting modulo E, we use ∈E



for the rule instance. As linear facts are consumed
upon rewriting, we use multiset inclusion, written ⊆],
to check that all facts in lfacts(l) occur sufficiently of-
ten in S. For persistent facts, we only check that each
fact in pfacts(l) occurs in S. To obtain the successor
state, we remove the consumed linear facts and add
the generated facts. The actions associated to the tran-
sition contain the set of actions of the rule instance,
the identifier of the rule, and the newly introduced
variables.
Example 2. The following multiset rewrite rules de-
scribe a simple protocol that sends messages together
with a hash of the message. The first rule describes the
agent A: he uses the key shared with B to send a fresh
message m to B. The second rule describes B: he re-
ceives a message together with its hash. Note that the
second rule can only be triggered if the input matches
the premise, i.e., if the hash is correctly computed.

Send_Message_A :
[Fr(m)]−−[ Sent(m) ]→[Out((m,h(m)))],

Receive_Message_B :
[In((m,h(m)))]−−[ Received(m) ]→[]

TAMARIN implements a Dolev-Yao intruder given
by the message deduction rules MD below. The in-
truder can receive any message sent on the network,
send out any term he knows, create fresh values or
public values, and apply functions from the function
signature. This message deduction is considered mod-
ulo the equational theory.
MD = { Out(x)−−[]→K(x), K(x)−−[ K(x) ]→In(x),

Fr(x : fr)−−[]→K(x : fr), []−−[]→K(x : pub) }
∪{ K(x1), . . . ,K(xn)−−[]→K( f (x1, . . . ,xn))

| f ∈ ΣFun with arity n }
Note that all messages on the public network transit via
the intruder, whose rules make the connection between
the Out and In facts in the protocol rules.

Moreover, in TAMARIN the Fr facts have a special
semantics. These facts can only be generated using
a special rule FRESH : []−−[ Fr(x) ]→[Fr(x)], and each
instance of the rule generates a new fresh value, as
ensured by the following definition of the possible
executions.
Definition 2 (Executions). Given a multiset rewriting
system R we define its set of executions as

execmsr(R) =
{

/0
A1−→R . . .

An−→RSn | ∀i, j ∈ Nn,a.

(Si+1 \# Si) = Fr(a)]∧

(S j+1 \# S j) = Fr(a)]⇒ i = j
}

Our security properties will be expressed as prop-
erties on the traces associated to the executions. We
define the set of traces as follows.

Definition 3 (Traces). The set of traces is defined as

tracesmsr(R) =
{
(A1, . . . ,An) | ∀ 0≤ i≤ n.

/0
A1=⇒R . . .

An=⇒R Sn ∈ execmsr(R)
}

where A
=⇒R is defined as /0−→ ∗R

A−→R
/0−→∗R for A 6= /0.

In TAMARIN, security properties are specified in an
expressive two-sorted first-order logic over the actions
on the traces. In this logic, the sort time is used for
time points, and Vtime are the temporal variables. The
other type msg for message is used for messages and
cryptographic terms.

Definition 4 (Trace formulas). A trace atom is either
false ⊥, a term equality t1 ≈ t2, a timepoint ordering
il j, a timepoint equality i .

= j, or an action F@i for
a fact F ∈ F and a timepoint i. A trace formula is a
first-order formula over trace atoms.

These trace formulas are used to specify the desired
security properties, and TAMARIN can then be used to
check whether all traces respect a property, or whether
there is an execution that violates a property.

Example 3. Consider the multiset rewrite rules given
in Example 2. The following property specifies that
any message received by B was previously sent by A:

∀i : time,m : msg.
Received(m)@i⇒ (∃ j.Sent(m)@ j∧ jl i)

For the formal definition of the semantics,
see (Schmidt et al., 2012).

4.2 Defining our Security Properties

Using trace formulas we can specify all our proper-
ties in TAMARIN as follows. To make messages vis-
ible on the trace, we instrument the protocol rules
in TAMARIN with two actions, Sent(A,B,m) and
Received(A,B,m), where the first one denotes that the
message m was sent by A to B, and Received(A,B,m)
denotes that B received message m from A. Note that
here we only use the message payload, i.e. m is the
part of the protocol message that is of type D. Using
these actions, we can define Non-Injective Message
Authenticity in TAMARIN as follows.

Property 10. A TAMARIN protocol model ensures
Non-Injective Message Authenticity (NIMA) between
sender A and receiver B for data D if the following
formula is satisfied on all traces:

∀i : time,A,B,m : msg.Received(A,B,m)@i
⇒ (∃ j.Sent(A,B,m)@ j∧ jl i)



This definition captures precisely the definition
from Section 3: we require that any message m re-
ceived by B from A, i.e. m ∈ set(RA,B,D), is included
in set(SA,B,D), i.e. was sent by A to B. We can de-
fine Non-Injective Message Delivery analogously by
interchanging the Sent and Received actions.
Property 11. A TAMARIN protocol model ensures
Non-Injective Message Delivery (NIMD) between
sender A and receiver B for data D if the following
formula is satisfied on all traces:

∀i : time,A,B,m : msg.Sent(A,B,m)@i
⇒ (∃ j.Received(A,B,m)@ j∧ il j)

To verify Non-Injective Message Integrity we can
simply check whether both Non-Injective Message Au-
thenticity and Non-Injective Message Delivery hold.

To ensure injectivity, we have to ensure that a mes-
sage cannot be duplicated, which we express as fol-
lows.
Property 12. A TAMARIN protocol model ensures
Injective Message Authenticity (IMA) between sender
A and receiver B for data D if the following formula is
satisfied on all traces:

∀i :time,A,B,m : msg.Received(A,B,m)@i
⇒(∃ j.Sent(A,B,m)@ j∧ jl i∧¬(∃i2 : time,

A2,B2 : msg.Received(A2,B2,m)@i2∧¬(i2 .
= i)))

This ensures that any received message was previ-
ously sent, and that there is not other time point where
the same message is received, thus capturing the in-
jectivity requirement4. The corresponding delivery
property definition is obtained easily by interchanging
the Sent and Received actions, as above.
Property 13. A TAMARIN protocol model ensures
Injective Message Delivery (IMD) between sender A
and receiver B for data D if the following formula is
satisfied on all traces:

∀i :time,A,B,m : msg.Sent(A,B,m)@i
⇒(∃ j.Received(A,B,m)@ j∧ il j
∧¬(∃i2 : time,A2,B2 : msg.

Sent(A2,B2,m)@i2∧¬(i2 .
= i)))

To verify Injective Message Integrity, we simply
check both properties at the same time.

Flow Authenticity and Flow Delivery are expressed
in TAMARIN as follows: we first verify that Injective
Message Authenticity or Injective Message Delivery
hold, respectively, and then check whether the order
of messages is preserved.

4We use unique fresh messages on the sender side to
prevent false attacks that would result from the same message
being sent twice and received twice.

Property 14. A TAMARIN protocol model ensures
Flow Authenticity (FA) between sender A and receiver
B for data D if it ensures Injective Message Authen-
ticity and if the following formula is satisfied on all
traces:

∀i, j : time,A,B,m,m2 : msg.
(Received(A,B,m)@i∧Received(A,B,m2)@ j∧ il j)
⇒ (∃k, l.Sent(A,B,m)@k∧Sent(A,B,m2)@l∧ kl l)

Property 15. A TAMARIN protocol model ensures
Flow Delivery (FD) between sender A and receiver B
for data D if it ensures Injective Message Delivery and
if the following formula is satisfied on all traces:

∀i, j : time,A,B,m,m2 : msg.
(Sent(A,B,m)@i∧Sent(A,B,m2)@ j∧ il j)
⇒ (∃k, l.Received(A,B,m)@k

∧Received(A,B,m2)@l∧ kl l)

Again, to verify Flow Integrity, we simply check
both properties at the same time.

4.3 Resilient Channels, Counters and
Timestamps

As noted above, delivery properties typically require a
resilient channel as an unrestricted Dolev-Yao intruder
can simply delete all messages and thus prevent any
message from arriving. We can model a resilient chan-
nel in TAMARIN by adding a restriction that enforces
that all messages are eventually delivered. A restric-
tion is a trace formula that TAMARIN will assume true,
i.e., it will discard all traces violating the restriction
when trying to prove a property.

To model a resilient channel, we add a new action
Ch_Sent(m) to all rules that send out messages on the
resilient channel, and an action Ch_Received(m) to all
rules that receive messages from the resilient channel.
Note that here m is not only the payload of type D,
but the entire protocol message, and that we do not
include senders or recipients. Using these actions, we
can express the fact that the channel is resilient using
the following formula:

∀i :time,m : msg.Ch_Sent(m)@i
⇒ (∃ j.Ch_Received(m)@ j∧ il j)

Note that this restriction on the intruder’s capabilities
does not prevent him from delaying messages for a cer-
tain time, reordering or duplicating them, or injecting
new messages. This means that even when assuming
a resilient channel our security properties do not hold
vacuously.

We also use restrictions to model sequence num-
bers and timestamps. An intuitive way of modeling



sequence number in TAMARIN would be to use state
facts to implement a counter using a constant (e.g.
zero) and a function (e.g. inc(·)). Consider a proto-
col that simply sends out a message together with its
counter:

Counter_Init : []−−[]→[Counter(zero)],
Send_Message : [Counter(n),Fr(m)]−−[]→

[Counter(inc(n)),Out((m,n))]

Such a model usually results in non-termination. When
TAMARIN tries to prove a property, it tries to find a
counterexample using a backwards-search approach.
More precisely, it starts from the negation of the for-
mula, and tries to construct a valid execution by re-
solving the premises of all rule instances mentioned in
the formula until it either has found a counterexample
or a contradiction.

When analyzing the above counter model, resolv-
ing the first premise of the Send_Message rule results
in two cases: either the premise is the conclusion of a
Counter_Init rule, or it results from a Send_Message
rule itself. In that case we need to resolve the same
premise again, and enter a loop.

Our solution to avoid this problem is to not model
the counter explicitly, but to let the intruder choose the
sequence number, while limiting his choice using a
restriction. Consider the rule

Send_Message :
[In(n),Fr(m)]−−[ Seq_Sent(A,B,n) ]→[Out((m,n))]

and the following restriction

∀i, j : time,A,B,seq1,seq2 : msg.
(Seq_Sent(A,B,seq1)@i∧Seq_Sent(A,B,seq2)@ j

∧ il j)⇒ (∃di f .seq2 ≈ seq1 +di f )

where “+” is an associative and commutative infix
operator provided by TAMARIN. Note that “+” does
not have any other associated equations and thus does
not exactly correspond to an addition of numbers. In
particular we do not have a neutral element 0, so that
seq1 +0 6= seq1. The restriction ensures that the term
representing the sequence number in any two subse-
quent messages increases by including a new term dif,
but without fixing dif precisely. Although this abstrac-
tion allows jumps (for example increments by 2 or
more) in the sequence number which would not occur
in reality, it fixes an order on the sequence numbers
which is sufficient to prove the properties we are in-
terested in, as we will see in the case studies. Finally
timestamps can be modeled in the same way, which
means that the intruder controls the timing, but cannot
go back in time.

5 Applications to SCADA Protocols

We verify the security of multiple variants of two
industrial communication protocols (namely MOD-
BUS and OPC-UA) to check if they guarantee the
properties we defined in Section 3. The TAMARIN
code is available online5, all verifications where com-
pleted on a standard laptop within a few minutes. As
mentioned earlier, all protocols presented in this Sec-
tion are transport protocols which carry a request from
a client to a server (the responses from the server to
the client can be considered as another instance of the
same protocol) over a potentially asynchronous and
insecure network. We consider an unbounded number
of sessions of the protocol, where each session is an
arbitrary long sequence of messages.

5.1 MODBUS

Description: MODBUS (MODBUS, 2004) is an in-
dustrial communication protocol designed by Modicon
(now Schneider Electric) in 1979. It has become one
of the most popular protocols in the domain and can
be used either on serial bus or on TCP communication.
We focus on the TCP version of the protocol, which
is nowadays more popular than the serial version. In
all MODBUS protocols, only the client is able to send
requests to which the server answers (meaning that the
server does never send a message on its own). In the
TCP version, the message includes a sequence number
in addition to the TCP sequence number. This number
is called a transaction identifier and only increased
by one at each client request. Some other terms are
also part of the message, i.e. (i) a protocol identifier
only used for compatibility with non-TCP versions, (ii)
the length of the message and (iii) the unit identifier
which is used to dispatch the command to actuators
and sensors. Those three terms are public values that
do not impact the security of the protocol. We choose
to model them as single public header ph. A generic
session of the protocol is displayed in Figure 2, where
n is the transaction identifier, reqi is a request from the
client and respi is the corresponding response from
the server.

The protocol relies on TCP to provide counter-
measures against network errors (e.g. checksums such
as CRC or LRC), and does not implement any pro-
tection against malicious adversaries. Thus anyone is
able to forge a fake message or modify an existing one,
allowing an adversary to run arbitrary commands on
servers. To avoid such attacks, two secure versions
were proposed. In (Fovino et al., 2009), the authors

5http://indusprotoverif.forge.imag.fr/
DPPLR17.tar.gz



Cli Srv

n, ph, req1

n, ph, resp1

n+ 1, ph, req2

n+ 1, ph, resp2

Figure 2: Two requests and responses in textbook MOD-
BUS (MODBUS, 2004).

proposed a version of MODBUS based on well-known
cryptographic primitives such as RSA and SHA2. Fig-
ure 3 presents the same session than in Figure 2 plus
the counter-measures proposed in (Fovino et al., 2009)
where tsi is the timestamp of the i-th message.

Cli Srv

ts1, n, ph, req1, sign(h(ts1, n, ph, req1), skCli)

ts2, n, ph, resp1, sign(h(ts2, n, ph, resp1), skSrv)

ts3, n+ 1, ph, req2, sign(h(ts3, n+ 1, ph, req2), skCli)

ts4, n+ 1, ph, resp2, sign(h(ts4, n+ 1, ph, resp2), skSrv)

Figure 3: Two requests and responses in secure MODBUS
from (Fovino et al., 2009).

In (Hayes and El-Khatib, 2013), they designed
another secure MODBUS protocol based on SCTP
(Stream Control Transmission Protocol). SCTP is a
transmission layer protocol as TCP and UDP which
provides protection against Denial-of-Service attacks.
However, like TCP it provides counter-measures
against network errors but none against malicious in-
truders. To avoid an adversary forging fake messages
or modifying existing ones, Hayes et. al. added mes-
sage authentication codes (MACs). Moreover, to avoid
replay attacks a nonce (called verification tag) pro-
vided by SCTP is included in the MACs of the mes-
sages. Figure 4 details the session in Figure 2 plus the
counter-measures proposed in (Hayes and El-Khatib,
2013) with vt the verification tag of the SCTP session.

Cli Srv

vt, n, ph, req1,mac((vt, n, ph, req1),K)

vt, n, ph, resp1,mac((vt, n, ph, resp1),K)

vt, n+ 1, ph, req2,mac((vt, n+ 1, ph, req2),K)

vt, n+ 1, ph, resp2,mac((vt, n+ 1, ph, resp2),K)

Figure 4: Two requests and responses in secure MODBUS
from (Hayes and El-Khatib, 2013).

Security Analysis: We modeled the three versions

of MODBUS described above and analyzed them with
TAMARIN to check if they satisfy the properties we
defined in Section 3. We performed a first analysis
assuming an insecure network, and the results are pre-
sented in Table 1.

TAMARIN finds attacks for all properties against
the standard version. This is not surprising since this
version of the protocol was not intended to provide
any security. However, the version with digital public
key signatures from (Fovino et al., 2009) is subject to
attacks since the identity of the receiver of the message
is not specified in the signature. Thus an intruder is
able to reroute a message to different recipient which
accepts the message, violating all of our properties.
This attack could be prevented by adding the receiver
inside the signature, or using a different public and
private key pair for each connection, which however
would be equivalent to using a symmetric authentica-
tion technique such as MACs, which is done in version
with MACs from (Hayes and El-Khatib, 2013). In this
version the attack is prevented since the symmetric
authentication keys are restricted to a specific session
between a specific client and a specific server. Thus if
an intruder changed the destination of a message, the
new recipient would not be able to verify the MAC.
This version of the protocol ensures all authenticity
properties, however it still fails on all delivery prop-
erties as the intruder can simply delete all message.
When assuming a resilient channel, it also ensures all
delivery properties (see Table 2). Note that even when
assuming a resilient channel the first two variants do
still not ensure any property as messages are still not
guaranteed to be delivered at the right recipient, as in
the above attack.

5.2 OPC-UA

Description: OPC-UA is one of the most recent in-
dustrial communication protocols, being released in
2006 (OPC Unified Architecture, 2012). It is devel-
oped by the OPC Foundation6, and is often referred to
as the next industrial communication standard. It is a
multi-level protocol, including transport and session
layers. The security layer implements key agreement
through a handshake. Then the client is invited to pro-
vide an authentication method such as a password or a
certificate using the generated key. The transport layer
consists in sending messages from the client to the
server using the security keys negotiated. A generic
session of the protocol is displayed in Figure 5 where:
• mh is a message header containing public values.
• sh is a security header consisting of a fresh nonce

called security token.

6A consortium of the main stakeholders of the domain.



Protocol NIMA IMA FA NIMD IMD FD
Standard MODBUS (MODBUS, 2004) UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE
MODBUS Sign (Fovino et al., 2009) UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE

MODBUS MAC (Hayes and El-Khatib, 2013) SAFE SAFE SAFE UNSAFE UNSAFE UNSAFE

Table 1: Results for MODBUS assuming an insecure network.

Protocol NIMA IMA FA NIMD IMD FD
Standard MODBUS (MODBUS, 2004) UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE
MODBUS Sign (Fovino et al., 2009) UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE

MODBUS MAC (Hayes and El-Khatib, 2013) SAFE SAFE SAFE SAFE SAFE SAFE

Table 2: Results for MODBUS assuming an resilient channel.

• n is a sequence number incremented for each re-
quest and response.

• rIDi is the ID of the request to correctly associate
responses.

• reqi (resp. respi) is the content of the request (resp.
response).

• pad is a padding if needed.
• mac(...) is a signature of everything above.

Only the sequence number, message body and sig-
natures sent encrypted.

Finally, three security modes exist in OPC-UA:
• SignAndEncrypt (Figure 5): messages are signed

mac(m,KSigXY ) and encrypted {m}KXY , where
mac(·, ·) is a message authentication code func-
tion, KXY the symmetric encryption key shared
by X and Y , KSigXY the symmetric signature key
shared by X and Y .

• Sign: it is the same as SignAndEncrypt but
messages are only signed using mac(m,KSigXY ),
and not encrypted. Thus message 1 (respec-
tively 2, 3, and 4) of Figure 5 becomes:
mh,sh,n,rID1,req1, pad,mac((mh,sh,n,rID1,
req1, pad),KSigCS)

• None: messages are neither signed nor encrypted
(mainly used for compatibility). Thus message 1
(respectively 2, 3, and 4) of Figure 5 becomes:

mh,sh,n,rID1,req1, pad

Security Analysis: We model the transport layer
of OPC-UA presented in Figure 5 for the three security
modes (None, Sign and SignAndEncrypt). Results
for the case of an insecure network are presented in
Table 3.

TAMARIN finds attacks on the version with security
mode None. This is not surprising since this version
was not intended to not provide any security. However
both the Sign and SignAndEncrypt versions are safe
for all authenticity properties. This means that having
only the MACs added in the Sign version is enough to
guarantee Flow Authenticity. To also have the corre-
sponding delivery properties, we again need to assume
a resilient channel (see Table 4).

Out of curiosity, we also checked a variant of the
protocol with only symmetric encryption and no MAC
(thus not an official version). It appears that we ob-
tain the same results as for signatures. This is due to
the fact that the symmetric keys are only shared by
two participants and any message with its destination
changed would not be readable by its new recipient.

OPC-UA in case of bounded sequence numbers.
Until now we assumed sequence numbers to be un-
bounded integers from N. However, in reality machine
integers are obviously bounded and this can have an
impact on properties such as Flow Integrity. To evalu-
ate this impact, we tested a modeling of OPC-UA Sig-
nAndEncrypt (described in Figure 5) with explicitly
bounded sequence numbers (in our example we bound
it to four). This means that if a client sends four mes-
sages, then the fourth message has the same sequence
number as the first one.

We checked the properties described in Section 3
on this version with TAMARIN and obtained the results
presented in Table 5: it turns out that Flow Integrity is
no longer verified. The attack works as follows: the
client sends out four messages, thus the fourth message
has the same sequence number as the first one. The
intruder delays the first three messages so that the
first message received by the server is the forth with
sequence number zero. He then transmits the second
message which has a sequence number of one, and is
thus accepted by the server although it was actually
sent earlier than the message he accepted previously.

Interestingly the described attack disappears if we
assume a resilient channel. The server will accept
each sequence number only once7, and if we have two
messages with the same sequence number this leads to
a contradiction since both of them have to be received.
This however implies that each sequence number can
be used only once also on the client side, thus there
can be only a finite number of messages, bounded by
the range of the sequence numbers.

7Note that allowing a sequence number to be reused
leads to attacks on Injective Message Authenticity as the
same message can be accepted multiple times.



Cli Srv

mh, sh, {n, rID1, req1, pad,mac((mh, sh, n, rID1, req1, pad),KSigCS)}KCS

mh, sh, {n+ 1, rID1, resp1, pad,mac((mh, sh, n+ 1, rID1, resp1, pad),KSigSC)}KSC

mh, sh, {n+ 2, rID2, req2, pad,mac((mh, sh, n+ 2, rID2, req2, pad),KSigCS)}KCS

mh, sh, {n+ 3, rID2, resp2, pad,mac((mh, sh, n+ 3, rID2, resp2, pad),KSigSC)}KSC

Figure 5: Two requests and responses in OPC-UA.

Protocol NIMA IMA FA NIMD IMD FD
OPC-UA None UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE
OPC-UA Sign SAFE SAFE SAFE UNSAFE UNSAFE UNSAFE

OPC-UA SignAndEncrypt SAFE SAFE SAFE UNSAFE UNSAFE UNSAFE
Table 3: Results for OPC-UA (OPC Unified Architecture, 2012), assuming an insecure network.

This analysis illustrates the need for a big range of
sequence numbers. If more messages than the range
of sequence numbers allows need to be exchanged,
one has to reinitialize the session (i.e., exchange new
keys) before running out of sequence numbers. This
is the solution adopted by OPC-UA: in (OPC Uni-
fied Architecture, 2012, p. 36) it is stated that “A
SequenceNumber may not be reused for any TokenId.
The SecurityToken lifetime should be short enough
to ensure that this never happens [...]”. Our analysis
underlines the importance of this requirement.

6 Conclusion

We provided a formal definition of Flow Integrity
and other related properties in industrial systems. Flow
Integrity ensures that all messages are received with-
out alteration, and in the same order as they were sent.
We checked Flow Integrity on multiple variants of
two real industrial protocols: MODBUS and OPC-UA.
Our analysis confirms that most of the secure modes of
these protocol ensure Flow Integrity given a resilient
network. However, we also identified a weakness in a
supposedly secure version of MODBUS, due to an in-
sufficient use of cryptography. Moreover, our analysis
of bounded sequence numbers highlighted the impor-
tance of the renewal of session keys to avoid the reuse
of sequence numbers. Unsurprisingly, the insecure
modes of these protocols did not ensure any of our se-
curity properties. Moreover it turns out that to ensure
delivery one has to assume a resilient channel, as the
intruder can otherwise always block messages. At the
same time, our results show that a resilient channel
alone is not sufficient to ensure Flow Integrity: one
still needs to use cryptography to prevent the intruder
from rerouting or injecting messages.

In the future, we aim at testing this property on
real implementations to see if we can reproduce the
theoretical results. We would also like to study other in-
dustrial protocols such as DNP3 or IEC 61850. Finally
we are interested in formalizing properties similar to
Flow Integrity for protocols with encapsulation. Such
protocols permit for example to transfer MODBUS
packets through an OPC-UA channel. They are a real
challenge for formal verification as there is few work
on protocol composition, and it has turned out that
verifying the composition is more complicated than
verify the protocols independently.
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