
c o m p u t e r s & s e c u r i t y 8 6 (2 0 1 9) 4 5 3 – 4 7 0

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

Formally and practically verifying flow

properties in industrial systems

�

Jannik Dreier

a , ∗, Maxime Puys

b , 1 , Marie-Laure Potet c , Pascal Lafourcade

d ,
Jean-Louis Roch

c

a Université de Lorraine, CNRS, Inria, LORIA, Nancy F-54000, France
b Université Grenoble Alpes, CEA, LETI, DSYS, Grenoble F-38000, France
c Université Grenoble Alpes, CNRS, Verimag, UMR 5104, IMAG, 700 av. centrale, Grenoble Cedex 9 38058, CS-40700,
France
d Université Clermont Auvergne, LIMOS, UMR 6158, Campus Universitaire des Cézeaux, BP 86, Aubière Cedex
63172, France

a r t i c l e i n f o

Article history:

Received 25 April 2018

Revised 4 September 2018

Accepted 7 September 2018

Available online 13 December 2018

Keywords:

Security protocols

Industrial systems

SCADA

Symbolic model

Automated verification

Flow integrity

a b s t r a c t

Industrial systems are nowadays regularly the target of cyberattacks, the most famous being

Stuxnet. At the same time such systems are increasingly interconnected with other systems

and insecure media such as Internet. In contrast to other IT systems, industrial systems of-

ten do not only require classical properties like data confidentiality or authentication of

the communication, but have special needs due to their interaction with physical world.

For example, the reordering or deletion of some commands sent to a machine can cause

the system to enter an unsafe state with potentially catastrophic effects. To prevent such

attacks, the integrity of the message flow is necessary. We provide a formal definition of

Flow Integrity . We apply our definitions to two well-known industrial protocols: OPC-UA and

MODBUS. Using Tamarin , a cryptographic protocol verification tool, we confirm that most of

the secure modes of these protocols ensure Flow Integrity given a resilient network. How-

ever, we also identify weaknesses in a supposedly secure version of MODBUS, as well as

subtleties in the handling of sequence numbers in OPC-UA. We also practically examine an

OPC-UA stack named python-opcua , where some of the subtleties are not handled correctly.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Industrial systems are often used to monitor and control a
physical process such as energy production and distribution,
water cleaning or transport systems. They are often simply
� This work has been partially funded by the CNRS PEPS SISC ASSI
the Investissements d’Avenir program (ANR-15-IDEX-02), and received
Auvergne Foundation, the Indo-French Centre for the Promotion of Ad
Promotion De La Recherche Avancée (CEFIPRA) through the project DST

∗ Corresponding author at: LORIA, Campus Scientifique, BP 239, Vand
E-mail addresses: Jannik.Dreier@loria.fr (J. Dreier), Maxime.Puys@cea

(M.-L. Potet), Pascal.Lafourcade@uca.fr (P. Lafourcade), Jean-Louis.Roch
1 This work was realized while author was affiliated to the Verimag l

https://doi.org/10.1016/j.cose.2018.09.018
0167-4048/© 2018 Elsevier Ltd. All rights reserved.
called Supervisory Control And Data Acquisition (SCADA) sys-
tems. Due to their interaction with the real world, the safety
of these systems is critical and any incident can potentially
harm humans and the environment. Since the Stuxnet worm
in 2010 (Langner, 2011), such systems increasingly face cy-
2016, the French National Research Agency in the framework of
 the support of the “Digital Trust” Chair from the University of
vanced Research (IFCPAR) and the Center Franco-Indien Pour La
/CNRS 2015-03 under DST-INRIA-CNRS Targeted Programme.

oeuvre-les-Nancy Cedex 54606, France.
.fr (M. Puys), Marie-Laure.Potet@univ-grenoble-alpes.fr
@univ-grenoble-alpes.fr (J.-L. Roch).
aboratory.

https://doi.org/10.1016/j.cose.2018.09.018
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.09.018&domain=pdf
https://doi.org/10.13039/501100001665
https://doi.org/10.13039/501100001852
mailto:Jannik.Dreier@loria.fr
mailto:Maxime.Puys@cea.fr
mailto:Marie-Laure.Potet@univ-grenoble-alpes.fr
mailto:Pascal.Lafourcade@uca.fr
mailto:Jean-Louis.Roch@univ-grenoble-alpes.fr
https://doi.org/10.1016/j.cose.2018.09.018

454 c o m p u t e r s & s e c u r i t y 8 6 (2 0 1 9) 4 5 3 – 4 7 0

b
e
c
f
N

d
p
p
a

w
c
t

F
b
a
d

i
a

S

b
t

c

2
e
s
a
c
fi
t
i
m

I
u
w
o
t
t
n
t
n
t
u
p
t

C
p
t

O
S
t
t
o

T

e

2

T
t
t
s
a
a
p
a
(
i
a
i
f
S
s
s
f
p

c

m
i
(
a
t
a
a
b
p
n
C

f
b
D
C

erattacks caused by various intruders, including terrorists or
nemy governments. As the frequency of such attacks is in-
reasing, the security of SCADA systems becomes a priority
or governmental agencies, e.g., Stouffer et al. (2011) for the
IST or ANSSI (2012) for the ANSSI.

While security objectives for IT systems are usually confi-
entiality, integrity and availability (CIA), industrial systems
ut a particular emphasis on integrity and availability. One
roperty required by such systems is that all sent commands
re received in the same order by the industrial machine,
hich is part of what we call Flow Integrity . This property is

rucial in industrial systems since most of commands require
he system to be in a specific state when they are launched.
or instance, if an electric device requires to be unpowered to
e manipulated, the shutdown command must arrive before
ny manipulation command. Inverting them could cause the
evice, along with its environment, to be damaged.

Automated protocol verification has been performed dur-
ng the past twenty years and multiple efficient tools such

s ProVerif (Blanchet, 2001), AVISPA (Armando et al., 2005),
cyther (Cremers, 2008) or tamarin (Meier et al., 2013) have
een developed. However, they focused on cryptographic pro-
ocols for Internet such as TLS (Cremers et al., 2016) or spe-
ial applications such as electronic voting (Kremer and Ryan,
005) or auctions (Dreier et al., 2013). The Flow Integrity prop-
rty differs from the properties usually verified in these clas-
ical protocols. For example, we want to ensure that messages
re delivered (a liveness property), which requires a resilient
hannel. As Internet is not resilient, resilient channels are dif-
cult to model in most tools that were designed to verify In-
ernet protocols. Moreover, the order of messages is ensured

n most Internet protocols as the messages have different for-
ats, so reordering the messages simply aborts the protocol.

n the context of industrial systems most of the protocols are
sed to transport commands, meaning that the messages al-
ays have the same format, rendering the ordering crucial. In

rder to ensure the correct ordering of the messages, most of
he transport protocols including industrial ones use times-
amps, counters and sequence numbers. These solutions are
otoriously difficult to model and verify using actual tools due

o some theoretical limitations of the tools that often lead to
on-termination. In order to face these limitations, we use

he verification tool tamarin (Meier et al., 2013), that allows
s to model counters and resilient channels that can build on

revious work concerning the verification of liveness proper-
ies (Backes et al., 2017).

ontributions To the best of our knowledge, the Flow Integrity
roperty has not yet been formalized in the context of indus-
rial protocols. Hence, we have two main contributions:

• We provide a formal definition of Flow Integrity in indus-
trial control systems; a property that ensures that all mes-
sages are received without alteration, and in the same or-
der as they were sent. We also define weaker properties,
including Non-injective and Injective Message Authentic-
ity, which ignore the ordering of messages but ensure that
all received messages are unmodified (and cannot be dupli-
cated in the injective case). We also define the correspond-
ing Non-injective and Injective Message Delivery proper-
ties, making sure that all messages are delivered (and in

the injective case the correct number of times).
• We study Flow Integrity for two real industrial protocols:

MODBUS and OPC-UA . Using Tamarin , we apply our defi-
nitions to multiple versions of these protocols and discover
a weakness in a version of MODBUS . We also identify prob-
lems in OPC-UA if sequence number overflows appear.

• We also perform practical experiments to validate our re-
sults on a real OPC-UA implementation. We were able to
show that we can reproduce the traces found by Tamarin

and achieve an insecure state of an example industrial pro-
cess using sequence number overflows.

utline In Section 2 , we discuss related work. Then in

ection 3 , we explain our definitions of the different proper-
ies, and in Section 4 how we modeled these properties with

he Tamarin prover. In Section 5 , we apply the verification of
ur property to the MODBUS and OPC-UA industrial protocols.
hen, in Section 6 , we show that our verification results can be
xperimentally confirmed. Finally, we conclude in Section 7 .

. Related work

he notion of integrity can vary a lot depending on the con-
ext. A generic definition could state that integrity is the main-
enance and assurance of the accuracy and consistency of
ome data over its life-cycle. For instance, this notion has been

pplied in 1987, by Clark and Wilson (1987) . They proposed

n access control model able to specify and analyze integrity
olicies. In such model, data alteration is restricted to those
uthorized. In 1998 in a different field, Heintze and Riecke
1998) analyzed the consistency of the values of variables dur-
ng a program execution. Within their framework, they are
ble to ensure properties relying on integrity such as non-
nterference (i.e. the modification of a variable should not af-
ect another). Again in a different field, in 2005, Umezawa and

himizu (2005) proposed a methodology to ensure that the de-
cription of hardware components (such as VHDL code) re-
pects some temporal logic properties such as invalid states
or state machines or invalid values for counters. Their ap-
roach relies both on model-checking and simulation.

In this paper, we studied the integrity of messages ex-
hanged over a potentially insecure network. Traditionally,
essage integrity is used to detect accidental changes us-

ng error detection codes such as Cyclic Redundancy Checks
CRC). However, such detection codes do not protect against
 malicious intruder since he can easily recalculate CRCs of
he messages he changes. Similarly the TCP protocol protects
gainst an accidental reordering of messages, but not against
 malicious intruder that also modifies the sequence num-
ers used for this purpose. To guarantee message integrity in

resence of malicious intruders, cryptographic primitives are
eeded, such as digital signatures or Message Authentication

odes (MAC).
Early works concerning the security of industrial protocols

ocused on discussing the security properties supported or not
y protocols. In 2004, Clarke et al. (2004) studied the security of
NP3 (Distributed Network Protocol) and ICCP (Inter-Control Center
ommunications Protocol). In 2005, Dzung et al. (2005) surveyed

c o m p u t e r s & s e c u r i t y 8 6 (2 0 1 9) 4 5 3 – 4 7 0 455

2 Note that z i can be the empty sequence.
3 The degree of control by the intruder will depend on the type

of network and the channel hypotheses.
the security in SCADA systems including informal analysis on
the security properties offered by various industrial protocols:
OPC (Open Platform Communications), MMS (Manufacturing Mes-
sage Specification), IEC 61850, ICCP and EtherNet/IP. In 2006, au-
thors of the technical documentation of OPC-UA (OPC Unified
Architecture) detailed the security measures of the protocol. In
2015, Wanying et al. (2015) summarized the security offered
by MODBUS, DNP3 and OPC-UA. None of these works give any
formal proof of security properties on the protocols.

In more recent works, formal analyses started to appear for
industrial protocols. In Patel and Yu (2007) the authors pro-
posed a formal verification of DNP3 using OFMC (Basin et al.,
2003, Open-Source Fixed-Point Model-Checker) and SPEAR
II (Saul and Hutchison, 1999, Security Protocol Engineering
and Analysis Resource) . In Dutertre (2007) , they detailed for-
mal specifications of MODBUS developed using PVS, a generic
theorem prover in order to help proving the consistency of
an implementation with the standards. In Fovino et al. (2009) ,
the authors proposed a secure version of MODBUS relying on
well-known cryptographic primitives such as RSA and SHA2.
In Hayes and El-Khatib (2013) , they designed another secure
version of the MODBUS protocol using hash-based message
authentication codes and built on SCTP (Stream Transmis-
sion Control Protocol). In Bratus et al. (2016) , authors provided
a Deep-Packet Inspection tool to verify syntactic correctness of
DNP3 packets using the Hammer tool (Patterson and Hirsch,
2014). In Puys et al. (2016) , the authors formally verified secrecy
and authentication properties of OPC-UA handshake proto-
cols using the ProVerif tool (Blanchet, 2001). However, none of
these works formally define or verify Flow Integrity.

In general – outside industrial systems – formal verifi-
cation of authentication properties Lowe (1997) is common.
As shown by Lafourcade and Puys (2015) , this property is
supported by many tools such as AVISPA (Armando et al.,
2005), ProVerif (Blanchet, 2001), Scyther (Cremers, 2008) and
Tamarin (Schmidt et al., 2012). However, our definition of in-
tegrity goes beyond the usual authentication properties, as we
also consider the ordering of the messages and ensure their
delivery (a liveness property), which is difficult to express and
verify in most of these tools. We chose Tamarin to build on
previous work (Backes et al., 2017) concerning the modeling of
resilient channels and the verification of liveness properties.

This paper is an extended version of a paper initially pre-
sented at SECRYPT’17 (Dreier et al., 2017). The previous version
does not contain the practical experiments to validate our the-
oretical results.

3. Defining authenticity, delivery and integrity

3.1. Notations

In our definitions, we talk about sequences of messages. Let
S ∗ denote the set of sequences over a set S . For a sequence
s , we write s i for its i th element, S for its length, and idx (s) =
{ 1 , . . . , S } for the set of its indices. We use [] to denote the empty
sequence, [s 1 , . . . , s k] to denote the sequence s of length k , and
s · s ′ to denote the concatenation of the sequences s and s ′ .
We say that the sequence [s 1 . . . s n] is a subchain of the sequence
[r 1 . . . r m

] if there exist sequences 2 z 0 , . . . , z n such that:

z 0 · [s 1] · z 1 · [s 2] · . . . · [s k −1] · z n −1 · [s n] · z n = [r 1 . . . r m

]

We denote by set (S) the unordered set that contains only
once each element of the sequence S , and by multiset (S) the
unordered multiset that contains the elements of S . To distin-
guish operations on multisets from operations on sets we use
the superscript � : for example ∪ denotes set union, whereas
∪

� denotes multiset union. We use regular set notation { · }
for sets and multisets whenever it is clear from the context
whether it is a set or a multiset.

In our model, the messages consist of terms. Let �Fun be a
finite signature of functions of the set Fun and V be a set of
variables, T �Fun (V) denotes the set of terms built using func-
tions from �Fun and variables from V . Unlike classical crypto-
graphic protocols, which are a finite sequences of messages,
we study transport protocols that aim at transporting com-
mands or data from a party to another, resulting in potentially
infinite sequences of messages. We call the transported com-
mands the payload of the message, in contrast to, e.g., protocol
headers and other additional values added by the protocol. To
be able to identify the payload inside a larger protocol mes-
sage, we use types. We assume that this part of the message
is of type D for data, and the rest of the message has other
types (e.g. H for hash or S for signatures).

3.2. Definitions & intruder model

We suppose a set of agents that exchange messages over a
network which can be (partly 3) controlled by a Dolev–Yao in-
truder (Dolev and Yao, 1981). A classical Dolev–Yao intruder
has access to all messages on the public network and can
modify, inject, delete or delay them. He is however limited by
the cryptographic primitives used: he can only decrypt a ci-
phertext or forge a signature if he knows the corresponding
keys. This is known as the perfect cryptography assumption .

We define Flow Integrity for the flow of messages between
two agents A and B . More precisely, we define the integrity of
message payload , i.e., we only aim at protecting the contents
of the message, as this is what is required by the applications
in industrial systems. This is modeled by syntactic subterms
of type D (for data) in the messages. We restrict our integrity
definitions to the payload only as we can have false attacks
otherwise. For example, consider a protocol that sends each
message together with a signature on the message, and a ran-
dom value. The message cannot be modified due to the sig-
nature, but the random value is unprotected. If we considered
the random value in our definitions the protocol would not en-
sure any kind of integrity, although the payload actually can-
not be modified.

Definition 1. Let S A, B, D be the sequence that contains the sub-
terms of type D of all messages sent by agent A to agent B ,
and the sequence R A, B, D contains the subterms of type D of
all messages received by agent B from A .

456 c o m p u t e r s & s e c u r i t y 8 6 (2 0 1 9) 4 5 3 – 4 7 0

t

t
o
m
s
q

t
i

w

a
a
c
p
m
s
m

m
s

P
t
s

u

b
s

P
e
s

a
d
s
t
6
N

P
(

s

j

P
i
m

P
e
m

i

P
b

m

FA)(FD FI∧

∧

∧

IMA)(IMD IMI

NIMA)(NIMD NIMI

Fig. 1 – Relationship of our notions: A ⇒ B if a protocol
ensuring A also ensures B .

t
e
a
t
I

a
o
D

P
s

P
A

i
w

P
A

t
t
t

I
j
I
p

a
t
t

T
M

S
M

P

p
s
R

p
s

t

l

For example, given a protocol that sends the message m of
ype D together with its hash h (m) of type H, S A, B, D only con-
ains the messages, and not the hashes. Since A might not
nly send messages to B but also to another agent C , and B
ight receive messages from A and E , we define the ordered

equence of messages that A sends to B , and the ordered se-
uence of messages that B received from A .

Note that we understand the notions of origin and destina-
ion from the agents perspective, i.e., a message m is in R A, B, D

f B believes that it came from A . Similarly, a message m that A
anted to send to B , but was received by C , is still in S A, B, D .

We now define several notions of integrity, authenticity
nd delivery. We have three levels of integrity, authenticity
nd delivery, where at each level integrity is defined as the
onjunction of the corresponding authenticity and delivery
roperties. Intuitively, the authenticity properties ensure that
essages have not been altered during transmission between

ender and receiver, and the delivery properties ensure that
essages are not lost.
The first notion of authenticity requires that all received

essages were sent by the sender to the receiver, but mes-
ages can be lost or duplicated.

roperty 1. A protocol ensures Non-Injective Message Authen-
icity (NIMA) between sender A and receiver B for data D if
et (R A, B, D) ⊆set (S A, B, D) .

Note that this also ensures that all received messages are
nmodified as each received message equals a sent message,
ut not that they are actually delivered as we only have a sub-
et. For this, we define the corresponding delivery property.

roperty 2. A protocol ensures Non-Injective Message Deliv-
ry (NIMD) between sender A and receiver B for data D if
et (R A, B, D) ⊇set (S A, B, D) .

Note that message delivery is difficult to achieve using
n insecure asynchronous network such as Internet, but in-
ustrial systems often use special (real-time) networks with

tronger channel guarantees such as Parallel Redundancy Pro-
ocol (PRP) and High-availability Seamless Redundancy (HSR) (IEC-
2439, 2016). Taking the above properties together, we obtain

on-Injective Message Integrity.

roperty 3. A protocol ensures Non-Injective Message Integrity
NIMI) between sender A and receiver B for data D if set (R A,B,D) =
et (S A,B,D) .

To ensure that messages cannot be duplicated, we have In-
ective Message Authenticity and Injective Message Delivery.

roperty 4. A protocol ensures Injective Message Authentic-
ty (IMA) between sender A and receiver B for data D if

ultiset (R A, B, D) ⊆m ultiset (S A, B, D) .

roperty 5. A protocol ensures Injective Message Deliv-
ry (IMD) between sender A and receiver B for data D if
ultiset (R A, B, D) ⊇m ultiset (S A, B, D) .

Both properties can be verified at the same time by check-
ng Injective Message Integrity.

roperty 6. A protocol ensures Injective Message Integrity (IMI)
etween sender A and receiver B for data D if mul t iset (R A,B,D) =
ul t iset (S A,B,D) .
Again it is easy to see that a protocol ensuring Injec-
ive Message Integrity also ensures Injective Message Deliv-
ry and Injective Message Authenticity, and that vice versa
 protocol ensuring Injective Message Delivery and Injec-
ive Message Authenticity also ensures Injective Message
ntegrity.

Injective Message Integrity ensures that all messages
re delivered, and not duplicated, but they can still be re-
rdered. This is prevented by Flow Authenticity and Flow

elivery.

roperty 7. A protocol ensures Flow Authenticity (FA) between
ender A and receiver B for data D if R A, B, D is a subchain of S A, B, D .

roperty 8. A protocol ensures Flow Delivery (FD) between sender
 and receiver B for data D if S A, B, D is a subchain of R A, B, D .

Both properties can be verified at the same time by check-
ng Flow Integrity, which corresponds to the property one
ould like to achieve in real systems.

roperty 9. A protocol ensures Flow Integrity (FI) between sender
 and receiver B for data D if S A,B,D = R A,B,D .

Again it is easy to see that a protocol ensuring Flow In-
egrity also ensures Flow Delivery and Flow Authenticity, and

hat vice versa a protocol ensuring Flow Delivery and Flow Au-
henticity also ensures Flow Integrity.

Note that a protocol ensuring Flow Integrity also ensures
njective Message Integrity, and that a protocol ensuring In-
ective Message Integrity also ensures Non-Injective Message
ntegrity (and analogously for the authenticity and delivery
roperties). This is summed up in Fig. 1 .

Moreover, if a protocol ensures either Flow Authenticity
nd Injective Message Delivery, or Flow Delivery and Injec-
ive Message Authenticity, this is sufficient to ensure Flow In-
egrity, as the following Theorem 1 shows.

heorem 1. A protocol that ensures Flow Delivery and Injective
essage Authenticity also ensures Flow Integrity (FD ∧ IMA ⇒ FI).

imilarly, a protocol that ensures Flow Authenticity and Injective
essage Delivery, also ensures Flow Integrity (FA ∧ IMD ⇒ FI).

roof. Let [s 1 , . . . , s n] = S A,B,D and [r 1 , . . . , r m

] = R A,B,D . Sup-
ose that a protocol ensures Flow Delivery and Injective Mes-
age Authenticity, i.e. we have that S A, B, D is a subc hain of
 A, B, D , and multiset (R A, B, D) ⊆multiset (S A, B, D). Moreover, as any
rotocol ensuring Flow Delivery also ensures Injective Mes-
age Delivery, we have multiset (R A, B, D) ⊇m ultiset (S A, B, D), and
hus mul t iset (R A,B,D) = mul t iset (S A,B,D) .

This means that n = m, i.e. both sequences have the same
ength. By the definition of subchains we have that there exist

c o m p u t e r s & s e c u r i t y 8 6 (2 0 1 9) 4 5 3 – 4 7 0 457

sequences z 0 , . . . , z n such that z 0 · [s 1] · z 1 · . . . · z n −1 · [s n] · z n =
[r 1 . . . r m

] . As n = m, we have that [s 1 , . . . , s n] = [r 1 , . . . , r n] ,
which is what we wanted to show.

The second proof is similar. �

4. The Tamarin prover

We now recall the syntax and semantics of labeled multiset
rewriting rules, which constitute the input language of the
Tamarin prover (Schmidt et al., 2012). We use the Tamarin
prover since it allows us to model resilient channels and verify
delivery properties.

4.1. Introducing the Tamarin prover

In Tamarin , equations are used to specify properties of func-
tions, where an equation over the signature �Fun is an un-
ordered pair of terms s, t ∈ T �Fun (V) , written s � t . An equational
presentation is a pair E = (�Fun ; E) of a signature �Fun and a
set of equations E . The corresponding equational theory = E is
the smallest �Fun -congruence containing all instances of the
equations in E . We often leave the signature �Fun implicit and
identify the equations E with the equational presentation E .
Similarly, we use = E for the equational theory = E . We say that
two terms s and t are equal modulo E iff s = E t. We use the
subscript E to denote the usual operations on sets, sequences,
and multisets where equality is modulo E instead of syntactic
equality. For example, we write ∈ E for set membership mod-
ulo E .

Example 1. To model MACs, let �Fun be the signature consist-
ing of the functions mac (· , ·) and verify (· , · , ·) together with
the equation

veri fy (mac (x, k) , x, k)
 true .

In Tamarin any system is modeled with multiset rewrite
rules . These rules manipulate multisets of facts which model
the current state of the system, with terms as arguments. For-
mally, given a signature �Fun and a (disjoint) set of fact sym-
bols �Fact , we define � = �Fun ∪ �Fact , and we define the set
of facts as F = { F (t 1 , . . . , t n) | t i ∈ T �Fun , F ∈ �Fact of arity n } . We
assume that �Fact is partitioned into linear and persistent fact
symbols; a fact F (t 1 , . . . , t n) is called linear if its function sym-
bol F is linear, and persistent if F is persistent. Linear facts can
only be consumed once, whereas persistent facts can be con-
sumed as often as needed. In practice, messages and protocol
state facts are usually modeled as linear facts, whereas the in-
truder knowledge or, e.g. long term keys are stored using per-
sistent facts. Facts are said to be ground if they only contain
ground terms. We denote by F

� the set of finite multisets built
using facts from F , and by G � the set of multisets of ground
facts.

The system’s possible state transitions are modeled by la-
beled multiset rewrite rules . A labeled multiset rewrite rule is a
tuple (id, l, a, r), written id : l −−[a]→ r, where l, a, r ∈ F

� and
id ∈ I is a unique identifier. Given a rule ri = id : l −−[a]→ r,
name (ri) = id denotes its name , prems (ri) = l its premises ,
acts (ri) = a its actions , and concs (ri) = r its conclusions . Finally,
rules are said to be ground if they only contain ground facts,
and ginsts (R) denotes the ground instances of a set R of multi-
set rewrite rules, lfacts (l) is the multiset of all linear facts in l ,
and pfacts (l) is the set of all persistent facts in l . We use mset (s)
to highlight that s is a multiset, and we use set (s) for the inter-
pretation of s as a set, even if it is a multiset.

The semantics of a set of multiset rewrite rules P are given
by a labeled transition relation → P ⊆ G � × G � × G � , defined by the
transition rule:

ri = id : l −−[a]→ r ∈ E ginsts (P) lfacts (l) ⊆� S pfacts (l) ⊆ S

S
set(a) −−−→ P ((S \ � lfacts (l)) ∪

� mset (r))

Note that the initial state of a labeled transition system
derived from multiset rewrite rules is the empty set of facts
∅ . Each transition transforms a multiset of facts S into a new
multiset of facts, according to the rewrite rule used. Moreover
each transition is labeled by the actions a of the rule. These
labels are used to specify security properties as explained be-
low. Since we perform multiset rewriting modulo E , we use
∈ E for the rule instance. As linear facts are consumed upon
rewriting, we use multiset inclusion, written ⊆� , to check that
all facts in lfacts (l) occur sufficiently often in S . For persistent
facts, we only check that each fact in pfacts (l) occurs in S . To
obtain the successor state, we remove the consumed linear
facts and add the generated facts. The actions associated to
the transition contain the set of actions of the rule instance,
the identifier of the rule, and the newly introduced variables.

Example 2. The following multiset rewrite rules describe a
simple protocol that sends messages together with a hash of
the message. The first rule describes the agent A : he uses the
key shared with B to send a fresh message m to B . The second
rule describes B : he receives a message together with its hash.
Note that the second rule can only be triggered if the input
matches the premise, i.e., if the hash is correctly computed.

Send _ Message _ A :
[Fr (m)] −−[Sent (m)]→ [Out ((m, h (m)))] ,

Receive _ Message _ B :
[In ((m, h (m)))] −−[Received(m)]→ []

Tamarin implements a Dolev–Yao intruder given by the
message deduction rules MD below. The intruder can receive
any message sent on the network, send out any term he
knows, create fresh values or public values, and apply func-
tions from the function signature. This message deduction is
considered modulo the equational theory.

MD = { Out (x) −−[]→ K (x) , K (x) −−[K (x)]→ In (x) ,

Fr (x : fr) −−[]→ K (x : fr) , [] −−[]→ K (x : pub) }
∪ { K (x 1) , . . . , K (x n) −−[]→ K (f (x 1 , . . . , x n))

| f ∈ �Fun with arity n }

Note that all messages on the public network transit via the
intruder, whose rules make the connection between the Out

and In facts in the protocol rules.
Moreover, in Tamarin the Fr facts have a special semantics.

These facts can only be generated using a special rule Fresh :
[] −−[Fr (x)]→ [Fr (x)] , and each instance of the rule generates a

458 c o m p u t e r s & s e c u r i t y 8 6 (2 0 1 9) 4 5 3 – 4 7 0

n
p

D
w

e

t
t

D

t

w

s

I

t
f

D

a
e

i

c
w
e

E
E
r

∀

e

4

U
T

w

S

t

d
o
m
N

P
s
D

∀

S

i

B
b

P
s

t

c
N

n

P
A

f

∀

s
m
m
t

a

P
D

f

∀

p

T
t
t

P
(

M
t

∀
(

4 We use unique fresh messages on the sender side to prevent
false attacks that would result from the same message being sent
twice and received twice.
ew fresh value, as ensured by the following definition of the
ossible executions.

efinition 2 (Executions) . Given a multiset rewriting system R

e define its set of executions as

xec msr (R) =

{∅ A 1 −→ R . . .
A n −→ R S n | ∀ i, j ∈ N n , a.

(S i +1 \ # S i) = Fr (a) � ∧

(S j+1 \ # S j) = Fr (a) � ⇒ i = j
}

Our security properties will be expressed as properties on

he traces associated to the executions. We define the set of
races as follows.

efinition 3 (Traces) . The set of traces is defined as

races msr (R)

=

{
(A 1 , . . . , A n) | ∀ 0 ≤ i ≤ n. ∅ A 1 �⇒ R . . .

A n �⇒ R S n ∈ exec msr (R)
}

here A �⇒ R is defined as
∅ −→

∗
R

A −→ R
∅ −→

∗
R for A � = ∅ .

In Tamarin , security properties are specified in an expres-
ive two-sorted first-order logic over the actions on the traces.
n this logic, the sort time is used for time points, and V time are
he temporal variables. The other type msg for message is used

or messages and cryptographic terms.

efinition 4 (Trace formulas) . A trace atom is either false ⊥ ,
 term equality t 1 ≈ t 2 , a timepoint ordering i �j , a timepoint
quality i � j , or an action F @ i for a fact F ∈ F and a timepoint
 . A trace formula is a first-order formula over trace atoms.

These trace formulas are used to specify the desired se-
urity properties, and Tamarin can then be used to check
hether all traces respect a property, or whether there is an

xecution that violates a property.

xample 3. Consider the multiset rewrite rules given in

xample 2 . The following property specifies that any message
eceived by B was previously sent by A :

 i : time , m : msg . Received (m)@ i ⇒ (∃ j. Sent (m)@ j ∧ j � i)

For the formal definition of the semantics, see Schmidt
t al. (2012) .

.2. Defining our security properties

sing trace formulas we can specify all our properties in

amarin as follows. To make messages visible on the trace,
e instrument the protocol rules in Tamarin with two actions,
ent (A, B, m) and Received (A, B, m) , where the first one denotes
hat the message m was sent by A to B , and Received (A, B, m)
enotes that B received message m from A . Note that here we
nly use the message payload, i.e. m is the part of the protocol
essage that is of type D . Using these actions, we can define
on-Injective Message Authenticity in Tamarin as follows.

roperty 10. A Tamarin protocol model ensures Non-Injective Mes-
age Authenticity (NIMA) between sender A and receiver B for data
 if the following formula is satisfied on all traces:

 i : time , A, B, m : msg . Received (A, B, m)@ i ⇒ (∃ j. Sent (A, B, m)@ j ∧ j � i)
This definition captures precisely the definition from

ection 3 : we require that any message m received by B from A ,
.e. m ∈ set (R A, B, D), is included in set (S A, B, D), i.e. was sent by A to
 . We can define Non-Injective Message Delivery analogously
y interchanging the Sent and Received actions.

roperty 11. A Tamarin protocol model ensures Non-Injective Mes-
age Delivery (NIMD) between sender A and receiver B for data D if
he following formula is satisfied on all traces:

∀ i : time , A, B, m : msg . Sent (A, B, m)@ i

⇒ (∃ j. Received (A, B, m)@ j ∧ i � j)

To verify Non-Injective Message Integrity we can simply
heck whether both Non-Injective Message Authenticity and

on-Injective Message Delivery hold.
To ensure injectivity, we have to ensure that a message can-

ot be duplicated, which we express as follows.

roperty 12. A Tamarin protocol model ensures Injective Message
uthenticity (IMA) between sender A and receiver B for data D if the

ollowing formula is satisfied on all traces:

 i : time , A, B, m : msg . Received (A, B, m)@ i

⇒ (∃ j. Sent (A, B, m)@ j ∧ j � i ∧ ¬ (∃ i 2 : time ,

A 2 , B 2 : msg . Received (A 2 , B 2 , m)@ i 2 ∧ ¬ (i 2 . = i)))

This ensures that any received message was previously
ent, and that there is not other time point where the same
essage is received, thus capturing the injectivity require-
ent.4 The corresponding delivery property definition is ob-

ained easily by interchanging the Sent and Received actions,
s above.

roperty 13. A Tamarin protocol model ensures Injective Message
elivery (IMD) between sender A and receiver B for data D if the

ollowing formula is satisfied on all traces:

 i : time , A, B, m : msg . Sent (A, B, m)@ i

⇒ (∃ j. Received (A, B, m)@ j ∧ i � j

∧ ¬ (∃ i 2 : time , A 2 , B 2 : msg .

Sent (A 2 , B 2 , m)@ i 2 ∧ ¬ (i 2 . = i)))

To verify Injective Message Integrity, we simply check both

roperties at the same time.
Flow Authenticity and Flow Delivery are expressed in

amarin as follows: we first verify that Injective Message Au-
henticity or Injective Message Delivery hold, respectively, and

hen check whether the order of messages is preserved.

roperty 14. A Tamarin protocol model ensures Flow Authenticity
FA) between sender A and receiver B for data D if it ensures Injective

essage Authenticity and if the following formula is satisfied on all
races:

 i, j : time , A, B, m, m 2 : msg .

 Received (A, B, m)@ i ∧ Received (A, B, m 2)@ j ∧ i � j)

c o m p u t e r s & s e c u r i t y 8 6 (2 0 1 9) 4 5 3 – 4 7 0 459

tocols in the domain and can be used either on serial bus

5 http://sancy.univ-bpclermont.fr/ ∼lafourcade/Cose.tar.
⇒ (∃ k, l. Sent (A, B, m)@ k ∧ Sent (A, B, m 2)@ l ∧ k � l)

Property 15. A Tamarin protocol model ensures Flow Delivery (FD)
between sender A and receiver B for data D if it ensures Injective
Message Delivery and if the following formula is satisfied on all
traces:

∀ i, j : time , A, B, m, m 2 : msg .

(Sent (A, B, m)@ i ∧ Sent (A, B, m 2)@ j ∧ i � j)

⇒ (∃ k, l. Received (A, B, m)@ k

∧ Received (A, B, m 2)@ l ∧ k � l)

Again, to verify Flow Integrity, we simply check both prop-
erties at the same time.

4.3. Resilient channels, counters and timestamps

As noted above, delivery properties typically require a resilient
channel as an unrestricted Dolev–Yao intruder can simply
delete all messages and thus prevent any message from arriv-
ing. We can model a resilient channel in Tamarin by adding a
restriction that enforces that all messages are eventually deliv-
ered. A restriction is a trace formula that Tamarin will assume
true, i.e., it will discard all traces violating the restriction when
trying to prove a property.

To model a resilient channel, we add a new action
Ch Sent (m) to all rules that send out messages on the resilient
channel, and an action Ch Received (m) to all rules that receive
messages from the resilient channel. Note that here m is not
only the payload of type D , but the entire protocol message,
and that we do not include senders or recipients. Using these
actions, we can express the fact that the channel is resilient
using the following formula:

∀ i : time , m : msg . Ch _ Sent (m)@ i

⇒ (∃ j. Ch _ Received (m)@ j ∧ i � j)

Note that this restriction on the intruder’s capabilities does
not prevent him from delaying messages for a certain time, re-
ordering or duplicating them, or injecting new messages. This
means that even when assuming a resilient channel our se-
curity properties do not hold vacuously.

We also use restrictions to model sequence numbers and
timestamps. An intuitive way of modeling sequence number
in Tamarin would be to use state facts to implement a counter
using a constant (e.g. zero) and a function (e.g. inc (·)). Consider
a protocol that simply sends out a message together with its
counter:

C ounter _ I nit : [] −−[]→ [Counter (zero)] ,
Send _ Message : [Counter (n) , Fr (m)] −−[]→

[Counter (inc (n)) , Out ((m, n))]

Such a model usually results in non-termination. When
Tamarin tries to prove a property, it tries to find a counterex-
ample using a backwards-search approach. More precisely, it
starts from the negation of the formula, and tries to con-
struct a valid execution by resolving the premises of all rule
instances mentioned in the formula until it either has found
a counterexample or a contradiction.
When analyzing the above counter model, resolving the
first premise of the Send _ Message rule results in two cases: ei-
ther the premise is the conclusion of a C ounter _ I nit rule, or it
results from a Send _ Message rule itself. In that case we need to
resolve the same premise again, and enter a loop.

Our solution to avoid this problem is to not model the
counter explicitly, but to let the intruder choose the sequence
number, while limiting his choice using a restriction. Consider
the rule

Send _ Message :
[In (n) , Fr (m)] −−[Seq _ Sent(A, B, n)]→ [Out ((m, n))]

and the following restriction

∀ i, j : time , A, B, seq 1 , seq 2 : msg .

(Seq _ Sent (A, B, seq 1)@ i ∧ Seq _ Sent (A, B, seq 2)@ j

∧ i � j) ⇒ (∃ di f.seq 2 ≈ seq 1 + di f)

where “ + ” is an associative and commutative infix operator
provided by Tamarin . Note that “ + ” does not have any other
associated equations and thus does not exactly correspond to
an addition of numbers. In particular we do not have a neutral
element 0, so that seq 1 + 0 � = seq 1 . The restriction ensures that
the term representing the sequence number in any two sub-
sequent messages increases by including a new term dif , but
without fixing dif precisely. Although this abstraction allows
jumps (for example increments by 2 or more) in the sequence
number which would not occur in reality, it fixes an order on
the sequence numbers which is sufficient to prove the prop-
erties we are interested in, as we will see in the case studies.
Finally timestamps can be modeled in the same way, which
means that the intruder controls the timing, but cannot go
back in time.

5. Applications to SCADA protocols

We verify the security of multiple variants of two industrial
communication protocols (namely MODBUS and OPC-UA) to
check if they guarantee the properties we defined in Section 3 .
The Tamarin code is available online,5 all verifications where
completed on a standard laptop within a few minutes. As
mentioned earlier, all protocols presented in this Section are
transport protocols which carry a request from a client to a
server (the responses from the server to the client can be con-
sidered as another instance of the same protocol) over a po-
tentially asynchronous and insecure network. We consider an
unbounded number of sessions of the protocol, where each
session is an arbitrary long sequence of messages.

5.1. MODBUS

Description MODBUS (MODBUS, 2004) is an industrial com-
munication protocol designed by Modicon (now Schneider
Electric) in 1979. It has become one of the most popular pro-

http://sancy.univ-bpclermont.fr/~lafourcade/Cose.tar

460 c o m p u t e r s & s e c u r i t y 8 6 (2 0 1 9) 4 5 3 – 4 7 0

n, ph, req1

n, ph, resp1

n + 1, ph, req2

n + 1, ph, resp2

Fig. 2 – Two requests and responses in textbook MODBUS

(MODBUS, 2004).

o
t
r
t
t
v
t
t

S
i

(
i

T
s
p
i

f
t

a

a
v
i
m
w
v
i
t
e

c
s
U
t

Cli

ts1, n, ph, req1, sign(h(ts1, n, ph, req1), skCli)

ts2, n, ph, resp1, sign(h(ts2, n, ph, resp1), skSrv)

ts3, n + 1, ph, req2, sign(h(ts3, n + 1, ph, req2), skCli)

ts4, n + 1, ph, resp2, sign(h(ts4, n + 1, ph, resp2), skSrv)

Fig. 3 – Two requests and responses in secure MODBUS

(Fovino et al., 2009).

vt, n, ph, req1, mac((vt, n, ph, req1), K)

vt, n, ph, resp1, mac((vt, n, ph, resp1), K)

vt, n + 1, ph, req2, mac((vt, n + 1, ph, req2), K)

vt, n + 1, ph, resp2, mac((vt, n + 1, ph, resp2), K)

Fig. 4 – Two requests and responses in secure MODBUS

(Hayes and El-Khatib, 2013).

n
a
i
(
i

m
m
v

S
d
i

f
r

d
p

t

(
t
i
c
c
r on TCP communication. We focus on the TCP version of
he protocol, which is nowadays more popular than the se-
ial version. In all MODBUS protocols, only the client is able
o send requests to which the server answers (meaning that
he server does never send a message on its own). In the TCP
ersion, the message includes a sequence number in addition

o the TCP sequence number. This number is called a transac-
ion identifier and only increased by one at each client request.
ome other terms are also part of the message, i.e. (i) a protocol

dentifier only used for compatibility with non-TCP versions,
ii) the length of the message and (iii) the unit identifier which

s used to dispatch the command to actuators and sensors.
hose three terms are public values that do not impact the
ecurity of the protocol. We choose to model them as single
ublic header ph . A generic session of the protocol is displayed

n Fig. 2 , where n is the transaction identifier, req i is a request
rom the client and resp i is the corresponding response from

he server.
The protocol relies on TCP to provide counter-measures

gainst network errors (e.g. checksums such as CRC or LRC),
nd does not implement any protection against malicious ad-
ersaries. Thus anyone is able to forge a fake message or mod-
fy an existing one, allowing an adversary to run arbitrary com-

ands on servers. To avoid such attacks, two secure versions
ere proposed. In Fovino et al. (2009) , the authors proposed a

ersion of MODBUS based on well-known cryptographic prim-
tives such as RSA and SHA2. Fig. 3 presents the same session

han in Fig. 2 plus the counter-measures proposed in Fovino
t al. (2009) where ts i is the timestamp of the i th message.

In Hayes and El-Khatib (2013) , they designed another se-
ure MODBUS protocol based on SCTP (Stream Control Transmis-
ion Protocol). SCTP is a transmission layer protocol as TCP and

DP which provides protection against Denial-of-Service at-
acks. However, like TCP it provides counter-measures against
Table 1 – Results for MODBUS assuming an insecure network.

Protocol NIMA IMA

Standard MODBUS
(MODBUS, 2004) UNSAFE UNSAFE
MODBUS Sign
(Fovino et al., 2009) UNSAFE UNSAFE
MODBUS MAC

(Hayes and El-Khatib, 2013) SAFE SAFE
etwork errors but none against malicious intruders. To
void an adversary forging fake messages or modifying ex-
sting ones, Hayes et al. added message authentication codes
MACs). Moreover, to avoid replay attacks a nonce (called ver-
fication tag) provided by SCTP is included in the MACs of the

essages. Fig. 4 details the session in Fig. 2 plus the counter-
easures proposed in Hayes and El-Khatib (2013) with vt the

erification tag of the SCTP session.

ecurity analysis We modeled the three versions of MODBUS
escribed above and analyzed them with Tamarin to check

f they satisfy the properties we defined in Section 3 . We per-
ormed a first analysis assuming an insecure network, and the
esults are presented in Table 1 .

Tamarin finds attacks for all properties against the stan-
ard version. This is not surprising since this version of the
rotocol was not intended to provide any security. However,
he version with digital public key signatures from Fovino et al.
2009) is subject to attacks since the identity of the receiver of
he message is not specified in the signature. Thus an intruder
s able to reroute a message to different recipient which ac-
epts the message, violating all of our properties. This attack
ould be prevented by adding the receiver inside the signature,
FA NIMD IMD FD

UNSAFE UNSAFE UNSAFE UNSAFE

UNSAFE UNSAFE UNSAFE UNSAFE

SAFE UNSAFE UNSAFE UNSAFE

c o m p u t e r s & s e c u r i t y 8 6 (2 0 1 9) 4 5 3 – 4 7 0 461

Table 2 – Results for MODBUS assuming an resilient channel.

Protocol NIMA IMA FA NIMD IMD FD

Standard MODBUS
(MODBUS, 2004) UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE
MODBUS Sign
(Fovino et al., 2009) UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE
MODBUS MAC

(Hayes and El-Khatib, 2013) SAFE SAFE SAFE SAFE SAFE SAFE

mh, sh, {n, rID1, req1, pad, mac((mh, sh, n, rID1, req1, pad), KSigCS)}KCS

mh, sh, {n + 1, rID1, resp1, pad, mac((mh, sh, n + 1, rID1, resp1, pad), KSigSC)}KSC

mh, sh, {n + 2, rID2, req2, pad, mac((mh, sh, n + 2, rID2, req2, pad), KSigCS)}KCS

mh, sh, {n + 3, rID2, resp2, pad, mac((mh, sh, n + 3, rID2, resp2, pad), KSigSC)}KSC

Fig. 5 – Two requests and responses in OPC-UA.

or using a different public and private key pair for each con-
nection, which however would be equivalent to using a sym-
metric authentication technique such as MACs, which is done
in version with MACs from Hayes and El-Khatib (2013) . In this
version the attack is prevented since the symmetric authenti-
cation keys are restricted to a specific session between a spe-
cific client and a specific server. Thus if an intruder changed
the destination of a message, the new recipient would not be
able to verify the MAC. This version of the protocol ensures
all authenticity properties, however it still fails on all deliv-
ery properties as the intruder can simply delete all message.
When assuming a resilient channel, it also ensures all deliv-
ery properties (see Table 2). Note that even when assuming a
resilient channel the first two variants do still not ensure any
property as messages are still not guaranteed to be delivered
at the right recipient, as in the above attack.

5.2. OPC-UA

Description OPC-UA is one of the most recent industrial com-
munication protocols, being released in 2006 (OPC-UA, 2012).
It is developed by the OPC Foundation (a consortium of the
main stakeholders of the domain), and is often referred to as
the next industrial communication standard. It is a multi-level
protocol, including transport and session layers. The security
layer implements key agreement through a handshake. Then
the client is invited to provide an authentication method such
as a password or a certificate using the generated key. The
transport layer consists in sending messages from the client
to the server using the security keys negotiated.

A generic session of the protocol is displayed in Fig. 5
where:

• mh is a message header containing public values.
• sh is a security header consisting of a fresh nonce called se-
curity token .

• n is a sequence number incremented for each request and
response.

• rID i is the ID of the request to correctly associate responses.
• req i (resp. resp i) is the content of the request (resp. re-

sponse).
• pad is a padding if needed.
• mac (...) is a signature of everything above.

Only the sequence number , message body and signatures are
sent encrypted.

Finally, three security modes exist in OPC-UA:

• SignAndEncrypt (Fig. 5): messages are signed mac (m, K Sig XY
)

and encrypted { m } K XY
, where mac (· , ·) is a message au-

thentication code function, K XY the symmetric encryption
key shared by X and Y , K Sig XY

the symmetric signature key
shared by X and Y .

• Sign : it is the same as SignAndEncrypt but messages are
only signed using mac (m, K Sig XY

) , and not encrypted. Thus
message 1 (respectively 2, 3, and 4) of Fig. 5 becomes:

mh, sh, n, rID 1 , req 1 , pad, mac ((mh, sh, n, rID 1 , req 1 , pad) , KSig CS)

• None : messages are neither signed nor encrypted (mainly
used for compatibility). Thus message 1 (respectively 2, 3,
and 4) of Fig. 5 becomes:

mh, sh, n, rID 1 , req 1 , pad

Security analysis We model the transport layer of OPC-UA
presented in Fig. 5 for the three security modes (None,
Sign and SignAndEncrypt). Results for the case of an insecure
network are presented in Table 3 .

462 c o m p u t e r s & s e c u r i t y 8 6 (2 0 1 9) 4 5 3 – 4 7 0

Table 3 – Results for OPC-UA (OPC-UA, 2012), assuming an insecure network.

Protocol NIMA IMA FA NIMD IMD FD

OPC-UA None UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE
OPC-UA Sign SAFE SAFE SAFE UNSAFE UNSAFE UNSAFE
OPC-UA SignAndEncrypt SAFE SAFE SAFE UNSAFE UNSAFE UNSAFE

Table 4 – Results for OPC-UA (OPC-UA, 2012), assuming a resilient channel.

Protocol NIMA IMA FA NIMD IMD FD

OPC-UA None UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE
OPC-UA Sign SAFE SAFE SAFE SAFE SAFE SAFE
OPC-UA SignAndEncrypt SAFE SAFE SAFE SAFE SAFE SAFE

Table 5 – Results for OPC-UA with bounded counters.

Protocol NIMA IMA FA NIMD IMD FD

OPC-UA SignAndEncrypt
with bounded numbers
Insecure Channel SAFE SAFE UNSAFE UNSAFE UNSAFE UNSAFE
OPC-UA SignAndEncrypt
with bounded numbers
Resilient Channel SAFE SAFE SAFE SAFE SAFE SAFE

N
t
S
e
S
h
a

w
fi
f
a
d
e

O
w
f
b
F
o
i
t
t
o

v
T

T
s
b
s
f

o
a
t

a
b
s
t
q

t
b

q
q
r
n
b

c
k
h
r

6

I
t
q
U

6 Note that allowing a sequence number to be reused leads to
attacks on Injective Message Authenticity as the same message
can be accepted multiple times.
Tamarin finds attacks on the version with security mode
one. This is not surprising since this version was not in-

ended to not provide any security. However both the Sign and

ignAndEncrypt versions are safe for all authenticity prop-
rties. This means that having only the MACs added in the
ign version is enough to guarantee Flow Authenticity. To also
ave the corresponding delivery properties, we again need to
ssume a resilient channel (see Table 4).

Out of curiosity, we also checked a variant of the protocol
ith only symmetric encryption and no MAC (thus not an of-
cial version). It appears that we obtain the same results as
or signatures. This is due to the fact that the symmetric keys
re only shared by two participants and any message with its
estination changed would not be readable by its new recipi-
nt.

PC-UA in case of bounded sequence numbers Until now

e assumed sequence numbers to be unbounded integers
rom N . However, in reality machine integers are obviously
ounded and this can have an impact on properties such as
low Integrity. To evaluate this impact, we tested a modeling
f OPC-UA SignAndEncrypt (described in Fig. 5) with explic-

tly bounded sequence numbers (in our example we bound it
o four). This means that if a client sends four messages, then

he fourth message has the same sequence number as the first
ne.

We checked the properties described in Section 3 on this
ersion with Tamarin and obtained the results presented in

able 5 : it turns out that Flow Integrity is no longer verified.
he attack works as follows: the client sends out four mes-
ages, thus the fourth message has the same sequence num-
er as the first one. The intruder delays the first three mes-
ages so that the first message received by the server is the
orth with sequence number zero. He then transmits the sec-
nd message which has a sequence number of one, and is thus
ccepted by the server although it was actually sent earlier
han the message he accepted previously.

Interestingly the described attack disappears if we assume
 resilient channel. The server will accept each sequence num-
er only once,6 and if we have two messages with the same
equence number this leads to a contradiction since both of
hem have to be received. This however implies that each se-
uence number can be used only once also on the client side,
hus there can be only a finite number of messages, bounded

y the range of the sequence numbers.
This analysis illustrates the need for a big range of se-

uence numbers. If more messages than the range of se-
uence numbers allows need to be exchanged, one has to
einitialize the session (i.e. , exchange new keys) before run-
ing out of sequence numbers. This is the solution adopted

y OPC-UA: in (OPC-UA, 2012, p. 36) it is stated that “A Sequen-
eNumber may not be reused for any TokenId. The SecurityTo-
en lifetime should be short enough to ensure that this never
appens [...]”. Our analysis underlines the importance of this
equirement.

. Experimental validation

n this section, we illustrate the feasibility of some of the at-
acks we found using Tamarin in the case of bounded se-
uence numbers on a real world implementation of the OPC-
A stack.

c o m p u t e r s & s e c u r i t y 8 6 (2 0 1 9) 4 5 3 – 4 7 0 463

SA,B = M1
seq=1

M2
seq=2

M3
seq=3

M4
seq=4

M5
seq=1

RA,B = M5
seq=1

M2
seq=2

Fig. 6 – Message reordering attack example.

SA,B = M1
seq=1

M2
seq=2

M3
seq=3

M4
seq=4

M5
seq=1

RA,B = M1
seq=1

M2
seq=2

M3
seq=3

M4
seq=4

M1
seq=1

Fig. 7 – Message replaying attack example.

Table 6 – Requests sent by the client.

Packet Command sent by client Comment

1 OpenSecureChannel
2 CreateSession OPC-UA Handshake
3 ActivateSession
4 Browse, P 1
5 Browse, P 2
6 Read, P 1 P 1 = 40 , P 2 =?
7 Read, P 2 P 1 = 40 , P 2 = 50
8 Write, P 2 , 60 P 1 = 40 , P 2 = 60
9 Write, P 1 , 50 P 1 = 50 , P 2 = 60
10 Write, P 2 , 80 P 1 = 50 , P 2 = 80
11 Write, P 1 , 70 P 1 = 70 , P 2 = 80
12 Write, P 2 , 110 P 1 = 70 , P 2 = 110
13 Write, P 1 , 100 P 1 = 100 , P 2 = 110
14 Write, P 2 , 150 P 1 = 100 , P 2 = 150

7 https://github.com/FreeOpcUa/python-opcua .
6.1. Scenario

We first recall the idea of the attacks we aim to find. They rely
on the fact that sequence numbers used by protocols to keep
an order on messages are bounded. For instance, if the client
sends five messages M 1 , ..., M 5 , and that counters are wrap-
ping at four, then M 5 and M 1 will share the same sequence
number. The attack on property Flow Authenticity given by
Tamarin on OPC-UA with bounded sequence numbers is pre-
sented in Fig. 6 . The clients sends five messages M 1 , ..., M 5 with
messages M 5 and M 1 sharing the same sequence number. The
intruder delays or block messages M 1 to M 4 , lets go message
M 5 and then either let go or replay M 2 . From the point of view
of the server, sequence numbers are correct and follow each
other, but messages have been reordered.

However, to the best of our knowledge, most implementa-
tions of OPC-UA rely on TCP and the client will not send mes-
sage M 2 before having received an answer of message M 1 . One
can thus either spoof the acknowledgment, or use a variant
of the attack as presented in Fig. 7 . The client and the server
will communicate normally with messages M 1 , ..., M 4 . Then,
when the client sends message M 5 , the attacker will replace
it with message M 1 (previously sent by the client). We want
to experimentally check if the server would accept such a re-
played message.

6.2. Example industrial process

To motivate these experimentations, we propose a toy indus-
trial scenario to instantiate our attacks. In our example, a
server controls a boiler with two pressure valves. The client
can control the pressure of these two valves by writing on two
variables P 1 and P 2 . The process must always guarantee that
P 2 > P 1 . To interact with the server, while ensuring this prop-
erty, the client sends messages as presented in Table 6 .

First, the client and the server perform the handshake in
order to generate cryptographic keys and authenticate each
other. More information on this part of the protocol can be
found in Puys et al. (2016) . Then the client performs two Browse

requests, aiming to find the location of variables P 1 and P 2 .
After this, the client sends two Read requests to find out the
current values of variables. Finally, the client sends a sequence
of Write requests in order to gradually increment the values of
the variables while preserving the property.

6.3. Tools

We test our attacks on a free Python implementation of the
OPC-UA stack called python-opcua. 7 Moreover, we rely on
Docker to help virtualizing clients and servers and Wireshark

to check the network packets exchanged. We first detail in
Section 6.3.1 some modifications we made to the stack under
test. Then, in Section 6.3.2 , we explain the network and hosts
configurations.

6.3.1. Modifications of the OPC-UA stack
In the standard, as well as in implementations, the sequence
number limit is fixed to 2 32 − 1024 which is rather difficult to
reach. In order to easily demonstrate our attack, we modify
parts of the implementation to reduce this limit to 8. Such
value is obviously very low but presents the advantage to
display easily understandable attack traces. Moreover, when
considering languages where the size of integer variables de-
pend on their type such as C , C++ or Java , a developer could
choose a wrong type by mistake and thus reduce the max-
imal value (e.g., char would be limited to 2 8 − 1). To bound
this limit to 8, we modified parts of the python-opcua stack.
In particular we modified at lines 212, 216, 254 and 263 of
file opcua/common/connection.py (see Listing 1) and line 61 of
file opcua/client/ua˙binary.py (see Listing 2). We emphasize that
these modifications only aim to change the value of the bound
(i.e., to replace 2 32 − 1024 by 8) but do not alter the behavior of
the server regarding replayed messages.

6.3.2. Network and hosts configuration

Classical network configurations considered for attacks such
as those introduced in Section 6.1 place the intruder in a Man-
in-the-Middle position. Such an intruder bears a resemblance
with the Dolev–Yao intruder used in Tamarin in the sense that

https://www.github.com/FreeOpcUa/python-opcua

464 c o m p u t e r s & s e c u r i t y 8 6 (2 0 1 9) 4 5 3 – 4 7 0

Listing 1 – opcua/common/connection.py.

Listing 2 – opcua/client/ua_binary.py.

t
t
m
i
t

b

a
c
f
t

he intruder has a total control on messages exchanged be-
ween the client and the server (and can for instance block

essages). During experimentations, we noticed that depend-
ng on the client behavior, such attack power is not needed for
he kind of attacks we study. We consider an attacker able to
oth sniff communications between the client and the server,
nd able to send packets on the network. Such an intruder
ould denote for instance a corrupted router, someone per-
orming MAC flooding or, as we implemented it, the host sys-
em of several virtualized machines. Our experimental net-

c o m p u t e r s & s e c u r i t y 8 6 (2 0 1 9) 4 5 3 – 4 7 0 465

Table 7 – Forge attack trace.

Packet Sequence Command sent by client Comment
number

1 1 OpenSecureChannel
2 2 CreateSession OPC-UA handshake
3 3 ActivateSession
4 4 Browse, P 1
5 5 Browse, P 2
6 6 Read, P 1 P 1 = 40 , P 2 =?
7 7 Read, P 2 P 1 = 40 , P 2 = 50
8 1 Write, P 2 , 60 P 1 = 40 , P 2 = 60
9 2 Write, P 1 , 50 P 1 = 50 , P 2 = 60
10 3 Write, P 2 , 80 P 1 = 50 , P 2 = 80
11 4 Write, P 1 , 70 P 1 = 70 , P 2 = 80
12 5 Write, P 2 , 110 P 1 = 70 , P 2 = 110
13 6 Write, P 1 , 100 P 1 = 100 , P 2 = 110
14 7 Write, P 2 , 150 P 1 = 100 , P 2 = 150
15 1 (Forged) Write, P 2 , 42 P 1 = 100 , P 2 = 42

Table 8 – Replay attack trace.

Packet Sequence Command sent by client Comment
number

1 1 OpenSecureChannel
2 2 CreateSession OPC-UA handshake
3 3 ActivateSession
4 4 Browse, P 1
5 5 Browse, P 2
6 6 Read, P 1 P 1 = 40 , P 2 =?
7 7 Read, P 2 P 1 = 40 , P 2 = 50
8 1 Write, P 2 , 60 P 1 = 40 , P 2 = 60
9 2 Write, P 1 , 50 P 1 = 50 , P 2 = 60
10 3 Write, P 2 , 80 P 1 = 50 , P 2 = 80
11 4 Write, P 1 , 70 P 1 = 70 , P 2 = 80
12 5 Write, P 2 , 110 P 1 = 70 , P 2 = 110
13 6 Write, P 1 , 100 P 1 = 100 , P 2 = 110
14 7 Write, P 2 , 150 P 1 = 100 , P 2 = 150
15 1 (Replayed) Write, P 2 , 60 P 1 = 100 , P 2 = 60

Docker
172.18.0.3
Client

Docker
172.18.0.2
Server

Host Attacker

Fig. 8 – Experimental network configuration.

8 http://sancy.univ-bpclermont.fr/ ∼lafourcade/Cose.tar .
work configuration is described in Fig. 8 . For convenience, the
client and the server are virtualized applications in the form
of Docker containers and the attacker is located on the host
system. The client and the server communicate on a dedi-
cated network where the client is identified as 172.18.0.3 and
the server as 172.18.0.2 . The attacker is an application located
on the host system that can wiretap this network and inject
packets on it.

6.4. Results

We propose two experimental attacks on OPC-UA. Against se-
curity mode None, we propose in Section 6.4.1 an injection at-
tack where the attacker forges a new packet and inserts it into
an ongoing session. Against security mode Sign and SignAn-
dEncrypt, we propose in Section 6.4.2 a replay attack (similar
as the one displayed in Fig. 7). All scripts used for attacks are
made available 8 .

6.4.1. Security mode “None”
Given the hypothesis that sequences numbers will wrap at 8,
we propose the attack detailed in Table 7 . Messages 1 to 14 are
sent normally by the client. Then, in message 15, the attacker

http://sancy.univ-bpclermont.fr/~lafourcade/Cose.tar

466 c o m p u t e r s & s e c u r i t y 8 6 (2 0 1 9) 4 5 3 – 4 7 0

Fig. 9 – Wireshark capture of forge attack. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

f
t

t
b
M
c

t

M
q
f
p
i
k
m
s
w
i

p
D

a
a
t
t

6
I
s
t
t
s
s

p

s
r

orges a WRITE request in order to set variable P 2 to 42, leading
o violating the property P 2 > P 1 ensured by the system.

Technical challenges that must be taken into account for
his attack are mainly dealing with the headers being accepted

y the server. At Ethernet and IP levels, the attacker must spoof
AC and IP addresses of both the client and the server (which

an be learned from observed traffic). Similarly at TCP level,
he attacker must spoof the source port used by the client.
ore complicated, the attacker must provide the right TCP se-

uence and acknowledgment numbers. Those can be deduced

rom the last packet sent by the server and its length. Multi-
le fields of the OPC-UA header must also match the session

nitiated by the client (namely the channel ID, the security to-
en and the request ID). Finally, the OPC-UA sequence number
ust follow the one in the previous request. We provided two

cripts in order to demonstrate a communication without and

ith the attack. An execution trace of both scripts is displayed

n Listing 3 .
Under attack, the server pushes a syslog to alert the safety
roperty has been violated (such log is accessed through

ocker’s interface). Moreover, when looking at a network an-
lyzer such as Wireshark , we can clearly see highlighted in or-
nge, the crafted packet with our chosen value (here 42), and

he server sending a response confirming the modification of
he variable (“Good”). Both packets are showed in Fig. 9 .

.4.2. Security modes “Sign” and “SignAndEncrypt”
n security mode Sign and SignAndEncrypt a cryptographic
ignature prevents the attacker to forge a new packet (since
he secret symmetric keys are required in order to sign it, and

hese are renewed for each session). However, the attacker can

till replay an older packet from the same session, with the
ame sequence number, as shown in Fig. 7 . Thus we can im-
lement the attack presented in Table 7 . Messages 1 to 14 are
ent normally by the client. Then, in message 15, the attacker
eplays the WRITE request sent by the client in message 8 in

c o m p u t e r s & s e c u r i t y 8 6 (2 0 1 9) 4 5 3 – 4 7 0 467

Listing 3 – Execution traces for forge attack.

Listing 4 – Execution traces for replay attack.

order to set variable P 2 to 60, leading to violating the property
P 2 > P 1 ensured by the system.

The technical challenges that must be taken into account
for this attack are similar to those in Section 6.4.1 at Ethernet,
IP and TCP levels. Then, the OPC-UA level is a simple replay of
a previous packet (packet 8 in our case) and cannot be modi-
fied due to the cryptographic signature. Thus all fields of the
OPC-UA header obviously match the session initiated by the
client, including the OPC-UA sequence number that must fol-
low the one in the previous request. We provided two scripts
in order to demonstrate a communication without and with
the attack. An execution trace of both scripts is displayed in
Listing 4 . Again, under attack, the server pushes a syslog to
alert the safety property has been violated (such log is ac-
cessed through Docker’s interface).

When looking at a network analyzer such as Wireshark , we
can clearly see highlighted in orange, the replayed packet with
value 60, and the server sending a response confirming the
modification of the variable (“Good”). One can also notice ran-
dom looking bytes (starting at f 1 38 e 2 and ending at bc f 2 30 at
Listing 5 – Execution traces for rep
the very bottom of the figure) denoting the cryptographic sig-
nature of the message. Both packets are showed in Fig. 10 . We
can go further and demonstrate the exact same replay attack
with the server configured in security mode SignAndEncrypt
as shown in Listing 5 .

Looking at a Wireshark capture of this transmission, one
only sees that packets are encrypted. The OPC-UA header is
in plaintext (yet signed), allowing Wireshark to recognize the
packet as OPC-UA, but the applicative contents cannot be ob-
served.

6.5. Limitations

Our experiments show some limitations of these attacks.
First, assuming the “wiretap and spoof” attacker introduced in
Section 6.3.2 , the attacker can only inject new packets in the
protocol flow but has no control over legitimate ones. As a con-
sequence, injected packets will decorrelate TCP and OPC-UA
sequence numbers shared by the client and the server, lead-
ing to the attack being easily detected (all packets later sent
lay attack (with encryption).

468 c o m p u t e r s & s e c u r i t y 8 6 (2 0 1 9) 4 5 3 – 4 7 0

Fig. 10 – Wireshark capture of replay attack. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

b
d
i
c
r
b
s
t
p
e

S

w
m

i
b
b

O
i
s

y the client will be refused by the server). Yet, we argue that
epending on the physical consequences of the attack on the

ndustrial process (including potential destruction of the fa-
ility), detection might become obvious anyway. Moreover, a
eal Man-in-the-Middle attacker could tamper sequence num-
ers of packets later sent by the client and keep the attack
ecret. In addition, in security mode SignAndEncrypt, the at-
acker cannot read packets and is bound to replay unknown

ackets leading to the attack being a lot less practical. How-
ver, there is a one-to-one correspondence between packets in
ign and SignEncrypt modes. Thus, in our experimental setup,
e knew exactly which packet to replay in SignAndEncrypt
ode based on the attack in Sign mode.
Finally, as mentioned at the end of Section 5.2 , it is stated

n the OPC-UA standard that “A SequenceNumber may not
e reused for any TokenId. The SecurityToken lifetime should

e short enough to ensure that this never happens [...]”.
ur experiment showed that this counter-measure is not

mplemented in python-opcua , thus other implementations
hould be checked. Yet, even if this counter-measure is not

c o m p u t e r s & s e c u r i t y 8 6 (2 0 1 9) 4 5 3 – 4 7 0 469

implemented, the limit of 2 32 −1024 appears difficult to reach:
for a client that sends a hundred messages per second, it
would take roughly sixteen months to reach the limit without
the session being renewed. Such running times can however
be attained in the case of some industrial systems that stay in
place for several decades. Therefore, while this attack might
be hard to realize on many real systems, our experiment
showed that it is still technically possible, at least on one
stack implementation.

7. Conclusion

We provided a formal definition of Flow Integrity and other re-
lated properties in industrial systems. Flow Integrity ensures
that all messages are received without alteration, and in the
same order as they were sent. We checked Flow Integrity on
multiple variants of two real industrial protocols: MODBUS
and OPC-UA. Our analysis confirms that most of the secure
modes of these protocol ensure Flow Integrity given a resilient
network. However, we also identified a weakness in a sup-
posedly secure version of MODBUS, due to an insufficient use
of cryptography. Moreover, our analysis of bounded sequence
numbers highlighted the importance of the renewal of session
keys to avoid the reuse of sequence numbers. Unsurprisingly,
the insecure modes of these protocols did not ensure any of
our security properties. Moreover it turns out that to ensure
delivery one has to assume a resilient channel, as the intruder
can otherwise always block messages. At the same time, our
results show that a resilient channel alone is not sufficient to
ensure Flow Integrity: one still needs to use cryptography to
prevent the intruder from rerouting or injecting messages.

We also performed practical experiments to validate our
results on a real OPC-UA implementation. We were able to
show that we can reproduce the traces found by Tamarin and
achieve an insecure state of an industrial process example.

In the future, we would also like to study other industrial
protocols such as DNP3 or IEC 61850. Finally we are interested
in formalizing properties similar to Flow Integrity for proto-
cols with encapsulation. Such protocols permit for example
to transfer MODBUS packets through OPC-UA as if they were
OPC-UA data so that MODBUS security is performed by OPC-
UA. They are a real challenge for formal verification as there is
few work on protocol composition, and it has turned out that
verifying the composition is more complicated than verify the
protocols independently.

R E F E R E N C E S

ANSSI. Managing cybersecurity for ICS, ANSSI. 2012.
Armando A , Basin D , Boichut Y , Chevalier Y , Compagna L ,

Cuellar J , Drielsma PH , Heám PC , Kouchnarenko O ,
Mantovani J , Mödersheim S , von Oheimb D , R M , Santiago J ,
Turuani M , Viganò L , Vigneron L . The AVISPA tool for the
automated validation of internet security protocols and

applications. Proceedings of the CAV’05, 2005 .
Backes M , Dreier J , Kremer S , Künnemann R . A novel approach for

reasoning about liveness in cryptographic protocols and its
application to fair exchange. In: Proceedings of the EuroS&P
2017. IEEE; 2017. p. 76–91 .
Basin D, Mödersheim S, Viganò L. In: Proceedings of the
ESORICS’03. An on-the-fly model-checker for security protocol
analysis; 2003. doi: 10.1007/978-3-540-39650-5_15 .

Blanchet B. In: Proceedings of the CSFW’01. An efficient
cryptographic protocol verifier based on Prolog rules; 2001.
doi: 10.1109/CSFW.2001.930138 .

Bratus S , Crain AJ , Hallberg SM , Hirsch DP , Patterson ML , Koo M ,
Smith SW . Implementing a vertically hardened dnp3 control
stack for power applications. In: Proceedings of the ICSS’16;
2016. p. 45–53 .

Clark DD , Wilson DR . A comparison of commercial and military
computer security policies. Proceedings of the IEEE
symposium on security and privacy. IEEE, 1987 . 184–184

Clarke GR , Reynders D , Wright E . Practical modern SCADA

protocols: DNP3, 60870.5 and related systems. Newnes; 2004 .
Cremers C. In: Proceedings of the CAV’08. The Scyther tool:

verification, falsification, and analysis of security protocols;
2008. doi: 10.1007/978-3-540-70545-1 38 .

Cremers C, Horvat M, Scott S, van der Merwe T. In: Proceedings of
the SP’16. Automated analysis and verification of TLS 1.3:
0-rtt, resumption and delayed authentication; 2016.
doi: 10.1109/SP.2016.35 .

Dolev D, Yao AC. On the security of public key protocols. IEEE
Trans Inf Theory 1981;29(2):198–208.
doi: 10.1109/TIT.1983.1056650 .

Dreier J, Lafourcade P, Lakhnech Y. In: Proceedings of the POST’13.
Formal verification of e-auction protocols; 2013.
doi: 10.1007/978-3-642-36830-1_13 .

Dreier J , Puys M , Potet M , Lafourcade P , Roch J . Formally verifying
flow integrity properties in industrial systems. Proceedings of
the SECRYPT’17, Madrid, Spain, 2017 .

Dutertre B. Formal modeling and analysis of the MODBUS
protocol. Critical infrastructure protection. Springer; 2007.
p. 189–204 .

Dzung D, Naedele M, von Hoff T, Crevatin M. Security for
industrial communication systems. Proc IEEE
2005;93(6):1152–77. doi: 10.1109/JPROC.2005.849714 .

Fovino I, Carcano A, Masera M, Trombetta A. In: Proceedings of
the IFIP AICT’09. Design and implementation of a secure
MODBUS protocol; 2009. doi: 10.1007/978-3-642-04798-5_6 .

Hayes G, El-Khatib K. In: Proceedings of the ICCIT’13. Securing
MODBUS transactions using hash-based message
authentication codes and stream transmission control
protocol; 2013. doi: 10.1109/ICCITechnology.2013.6579545 .

Heintze N , Riecke JG . The slam calculus: programming with

secrecy and integrity. Proceedings of thePOPL’98, 1998 .
IEC-62439. Industrial communication networks – high availability

automation networks - Part 3: parallel redundancy protocol
(PRP) and high-availability seamless redundancy (HSR).
International Electrotechnical Commission; 2016.

Kremer S , Ryan MD . Analysis of an electronic voting protocol in

the applied pi-calculus. Proceedings of the ESOP’05, 2005 .
Lafourcade P , Puys M . Performance evaluations of cryptographic

protocols. verification tools dealing with algebraic properties.
Proceedings of the FPS 2015, 2015 .

Langner R. Stuxnet: dissecting a cyberwarfare weapon. Secur
Privacy IEEE 2011;9(3):49–51
https://doi.org/10.1109/MSP.2011.67 .

Lowe G . A hierarchy of authentication specifications. Proceedings
of the CSFW ’97, 1997 .

Meier S, Schmidt B, Cremers C, Basin D. In: Proceedings of the
CAV’13. The TAMARIN prover for the symbolic analysis of
security protocols; 2013. doi: 10.1007/978-3-642-39799-8_48 .

MODBUS. MODBUS IDA, MODBUS messaging on TCP/IP
implementation guide v1.0a. 2004, MODBUS.

OPC-UA. Part 6: Mappings, OPC-UA. 2012.
Patel SC , Yu Y . Analysis of SCADA security models. Int Manag Rev

2007;3(2):68 .

http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0002
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0002
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0002
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0002
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0002
https://doi.org/10.1007/978-3-540-39650-5_15
https://doi.org/10.1109/CSFW.2001.930138
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0005
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0005
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0005
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0005
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0005
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0005
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0005
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0005
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0006
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0006
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0006
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0006
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0007
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0007
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0007
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0007
https://doi.org/10.1007/978-3-540-70545-1 \ignorespaces 38
https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1007/978-3-642-36830-1_13
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0012
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0012
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0012
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0012
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0012
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0012
https://doi.org/10.1109/JPROC.2005.849714
https://doi.org/10.1007/978-3-642-04798-5_6
https://doi.org/10.1109/ICCITechnology.2013.6579545
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0017
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0017
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0017
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0018
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0018
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0018
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0019
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0019
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0019
https://doi.org/10.1109/MSP.2011.67
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0021
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0021
https://doi.org/10.1007/978-3-642-39799-8_48
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0023
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0023
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0023

470 c o m p u t e r s & s e c u r i t y 8 6 (2 0 1 9) 4 5 3 – 4 7 0

P

P

S

S

S

U

W

J

N

a
l
t
n

M
v

G
d
w

C
o
p

M
“
o
f
h
s
a
g

P
C
a
D
d
m
a
d
L
m
N

J
G

t
h
c
p

atterson M., Hirsch D.. Hammer parser generator.
https://github.com/UpstandingHackers/hammer ; 2014.

uys M, Potet M, Lafourcade P. In: Proceedings of the
SAFECOMP’16. Formal analysis of security properties on the
OPC-UA SCADA protocol; 2016.
doi: 10.1007/978-3-319-45477-1_6 .

aul E., Hutchison A. SPEAR II – the security protocol engineering
and analysis resource. In Second Annual South African

Telecommunications, Networks and Applications Conference,
pages 171–177, Durban, South Africa, September 1999.

chmidt B, Meier S, Cremers C, Basin D. In: Proceedings of the
CSF’12. Automated analysis of Diffie-Hellman protocols and

advanced security properties; 2012. doi: 10.1109/CSF.2012.25 .
touffer K , Falco J , Karen S . Guide to industrial control systems

(ICS) security. NIST Spec Publ 2011;800(82) . 16–16
mezawa Y , Shimizu T . A formal verification methodology for

checking data integrity. Proceedings of the DATE’05, 2005 .
anying Q, Weimin W, Surong Z, Yan Z. In: Proceedings of the

JIMET’15. The study of security issues for the industrial
control systems communication protocols; 2015.
doi: 10.2991/jimet-15.2015.129 .

annik Dreier is an Associate Professor at Universit de Lorraine,
ancy, France. He obtained his Ph.D. at University Grenoble Alpes,
nd completed a Post-Doctoral stay at ETH Zurich. His research

ies in the area of computer- assisted formal verification of cryp-
ographic applications and protocols, including tools, formal defi-
itions of complex security notions, and theoretical bases for this.

axime Puys obtained his Ph.D. in the Vrimag laboratory of Uni-
ersity of Grenoble Alpes. Supervised by Marie-Laure Potet (Prof.
renoble-INP) and Jean-Louis Roch (MCF. Grenoble-INP), his thesis
ealt with the cybersecurity of industrial systems. He currently
orks within the French Alternative Energies and Atomic Energy
ommission (CEA). Interested in formal methods in the domain

f cybersecurity, he aims at applying them to concrete industrial
rojects.

arie-Laure Potet received the Ph.D. in Computer Science and the
Ha- bilitation a diriger des recherches (HDR)” from the University
f Grenoble, France, in 1988 and 2000, respectively. She is currently
ull Professor at Greno- ble INP/Ensimag. Her research interests are
ow to build and analyze systems with high level of safety and

ecurity requirements. She is member of the VER- IMAG laboratory
nd the head of ”Proofs and Code analysis for Safety and Security”
roup.

ascal Lafourcade obtained his Ph.D. in the LSV laboratory at ENS
achan on verification of cryptographic protocols in presence of
lgebraic properties. Then he spent one year at the ETH Zurich in

avid Basin’s group, work- ing on WSN. Afterwards he was Maitre
e conference at Verimag during seven years, developing auto-
atic techniques for verifying cryptographic primitives, and an-

lyzing security protocols. Between 2013 and 2016 he held an in-
ustrial chair on Digital Trust in Clermont Ferrand at the LIMOS
aboratory. Now he is an associate professor at the University Cler-
ont Auvergne (Clermont- Ferrand, France), and a member of the
etworks and Protocols Team of the LIMOS Laboratory.

ean-Louis Roch obtained his Ph.D. in applied mathematics at
renoble INP in 1989. He is a member of the VERIMAG laboratory in

he “Proofs and Code analysis for Safety and Security” group, and

ead of the ENSIMAG engineering school. His current research fo-
uses on provably secure distributed, parallel and interactive com-
utations.

https://github.com/UpstandingHackers/hammer
https://doi.org/10.1007/978-3-319-45477-1_6
https://doi.org/10.1109/CSF.2012.25
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0026
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0026
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0026
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0026
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0026
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0027
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0027
http://refhub.elsevier.com/S0167-4048(18)31441-X/sbref0027
https://doi.org/10.2991/jimet-15.2015.129

	Formally and practically verifying flow properties in industrial systems
	1 Introduction
	2 Related work
	3 Defining authenticity, delivery and integrity
	3.1 Notations
	3.2 Definitions & intruder model

	4 The Tamarin prover
	4.1 Introducing the Tamarin prover
	4.2 Defining our security properties
	4.3 Resilient channels, counters and timestamps

	5 Applications to SCADA protocols
	5.1 MODBUS
	5.2 OPC-UA

	6 Experimental validation
	6.1 Scenario
	6.2 Example industrial process
	6.3 Tools
	6.3.1 Modifications of the OPC-UA stack
	6.3.2 Network and hosts configuration

	6.4 Results
	6.4.1 Security mode “None”
	6.4.2 Security modes “Sign” and “SignAndEncrypt”

	6.5 Limitations

	7 Conclusion

	Reference

