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ABSTRACT
In recent years, Informational Technologies (IT) was massively
deployed into Industrial Control Systems (ICS) mainly for its eco-
nomic benefits. However, this new paradigm, converging IT and
Operational Technologies (OT), brings new challenges that com-
panies need to face. Historically, ICS had to cope with safety re-
quirements which ensure the protection of people, environment,
and assets. Now, ICS must deal with additional threats, coming
from cyberattacks, in order to maintain safety. For that purpose,
it becomes essential to develop new cybersecurity technologies
and methodologies that allow to assess the safety of ICS against
cyberattacks.

In this paper, we propose a new methodology, based on Pro-
grammable Logic Controller (PLC) logic in order to identify cyber-
attacks that impacts the ICS safety. Our methodology transforms
a PLC logic into a finite-state machine that represents the PLC
behavior. Then, using this automaton, we identify which modifica-
tions in states of sensors and actuators leads to compromising the
safety. Finally, we build attack scenarios from these events and the
network vulnerabilities. We apply our methodology on a simple
example, yet challenging to analyze by hand, and we show how we
manage to scale up on a classical example from the control systems
domain: the Tennessee Eastman chemical process.
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1 INTRODUCTION
Risk assessment is the first technical step of the IEC 27001 [10]
standard on the Information Security Management Systems (ISMS)
deployment. To account for new vulnerabilities or countermeasures,
risk assessment has to be frequently renewed due to the state-of-the-
art of attacks quick evolution. For security controls deployment, we
require tools that can determine attack scenarios from risk analysis.

ICS are becoming the target of cyberattack. Often called SCADA
systems, they control industrial operations like power grid manage-
ment, water treatment, or transportation. Any misbehavior might
possibly endanger both people and the environment due to their
criticality. One of the most widely publicized attacks was Stuxnet
in 2010 [18], in which a worm was able to damage Iranian nu-
clear centrifuges. People became aware through this incident that a
computer attack can have concrete impacts on the physical world.

In the past few years, more attacks on these systems have come
to light. In contrast with traditional IT systems which place a strong
emphasis on secrecy and authentication of data, ICS first aim to
assure availability and integrity of their process. On another hand,
the lifespan of their equipment might count in tens of years, and
updating them in the event of vulnerabilities is challenging. Most
of protocols used by industrial systems for communication were
not created with security in mind and do not provide any security
feature.

The behavior of control systems is mainly managed by pro-
grammable logic controllers (PLCs). These devices allow to retrieve
inputs from the physical process, update the state of the system ac-
cording to a program, and compute outputs. These programs can be
specified in multiple languages and using different programming
paradigms. Some are textual languages such as Structured Text
(ST) and Instruction List (IL), while others are graphical languages:
Ladder Diagram, Function Block Diagram (FBD) and Sequential
Function Chart (SFC). These languages allow to express the de-
sired behavior of the process in the general form of state-transition
diagrams.

Contributions: In this paper, we introduce a methodology to iden-
tify and generate attack scenarios against ICS. In particular, we aim
to uncover scenarios where a cyberattack impacts safety functions.
According to IEC 62443-1-1 [12], security refers respectively to the
“prevention of illegal or unwanted penetration of, or interference with
the proper and intended operation of an industrial automation and
control system” and safety refers as “freedom from unacceptable risk”.
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In other words, safety aims to protect the system against mishaps
coming from itself and security to protect the system against exter-
nal threats. Thus, our goal is to determine what actions on the states
of sensors and the actuators available on the industrial network
an attacker can take and what effects these actions will have on
the industrial process and the safety functions to ensure. We con-
sider a number of factors, including the behavior of the process and
the safety requirements that must be followed, in order to identify
such attacks. However, discovering cybersecurity attacks on safety
functions is a tedious process. Related works show a high tendency
to run into combinatorial explosion due to the complexity of their
safety and security models.

We aim our methodology to follow both an industrial risk anal-
ysis, allowing to state safety functions; and a cybersecurity risk
analysis such as STRIDE [29] to find security weaknesses. To re-
duce combinatorial explosion, we used a lower complex model than
the literature based on the PLC logic. We apply our methodology
on a simple example, yet challenging to analyze by hand, and we
show how we manage to scale up on a variant of a classical control
system example: the Tennessee Eastman chemical process [8]. To
summarize, our contributions are:

(1) A lower complex safety-security model than the literature
allowing automatic analyzes scaling up to real use cases;

(2) An analysis pass to discover specific parts of the finite au-
tomaton where the actions of the attacker might compromise
safety functions;

(3) A Satisfiability Modulo Theories (SMT) based analysis to find
which variables should be attacked and with which values
to produce attack scenarios.

The value of such scenarios is twofold. It can (i) allow to identify
safety critical network connections, and (ii) identify attacks that
focus on maximizing the impact on the safety functions while main-
taining a legitimate PLC behavior. Such attacks would indeed hard
to uncover with most of the network intrusion detection systems.

Outline: Section 2 will present and discuss related works. Sec-
tion 3 will detail each step of our attack finding methodology. Sec-
tion 4 will illustrate our methodology with example case studies
and finally, Section 5 will conclude and show perspectives.

2 RELATEDWORK
As early as 2008, Hentea [9], then Cardenas et al. [7] in 2011, iden-
tified the need to converge security and safety risk assessment
methods for ICS. This topic has received an increasing interest over
the years with a significant growth in proposed methods combin-
ing both safety and security of ICS. The major challenge lies in the
ability to model the system under its physical (safety) and cyber
(security) aspects in order to highlight the existing links between
cyberattacks and their impacts on safety. Many studies try to model
the system in a formal way but the complexity of the physical and
cyber interactions makes it difficult to scale up.

In the related works, two trends can be distinguished to identify
safety/security risks. The first one proposes a unified identification
of safety and security risks based on an intersection of modeling
methods. These approaches allow to provide remediation for both
types of risks. Conversely, integratedmethods aim to define security

risks that impact safety functions for purposes of providing security
remediation that protect the system’s safety.

2.1 Unified Methods
Abdo et al. [1] propose to combine attack trees with a Bowtie
analysis which combines fault trees with event trees. Kumar [17]
describes industrial systems through a dynamic reliability block
diagram augmented with attack-fault trees (AFT) to model the cas-
cading effects of failure scenarios. This diagram is then transformed
into a stochastic timed automaton to verify safety properties. An-
dré et al. [2] improves this method by proposing the possibility to
weight the timed automata from the AFTs according to parameters
such as budget, time or computing power of the attacker.

Kriaa et al. [16] propose a Domain Specific Language (DSL),
based on the Figaro language to create a knowledge base that de-
scribes the typical components of ICS as well as their vulnerabilities
and possible failures. In addition, this DSL allows the specification
of rules for interactions between components alongside rules for
attacks and failures occurrences. Then, after modeling the system
with these components, a set of tools automatically generate attack
and fault scenarios.

The benefits of these methods lies mainly in the completeness
of the modeled attacks. This requirement limits these methods
in two ways. Firstly, these methods depend highly on modelers’s
expertise, their technical sensitivities and a significant amount of
technology intelligence. Secondly, the model’s exhaustiveness (qual-
ity criterion) increases significantly the likelihood of combinatorial
explosion. Yet, these methods generate precise attack scenarios that
allow a good understanding of their consequences and cascading
effects.

2.2 Integrated Methods
Puys et al. [24] introduce a method which models the system and
attacker profiles through timed automata. Then, safety properties
are expressed and verified by the UPPALL model checker on a
composition of the system and the chosen attacker profiles’ timed
automata. Khaled et al. [14] improve this method by modeling the
system by a composition of nodes. Each node is a component of the
ICS (physical objects, software or people) defined by its capabilities
and its behaviors. Then, a graph is generated by modeling the
interactions and the communication protocols existing between the
different nodes. Finally, from a Dolev-Yao based attacker model, an
analyzer provides the possible attacks and check if they are feasible,
according to a set of security properties. Cheh et al. [6] propose an
optimization of [24] by considering physical layer interactions in
the attacker model.

Mesli-kesraoui et al. [20] model the whole control-command
chain (control program, supervision interface, physical equipment
and human tasks) in a timed automaton. Then, a set of usage and
safety properties are verified on the timed controller of a simple use
case (a single task consisting of opening a valve) with the UPPAAL
model checker.

Rocchetto and Tippenhauer [28] present a method based on
the cryptographic protocol verification tool CL-Atse [30] and the
ASLAN++ language. The authors extend the Dolev-Yao attaker
model, notably to take into account possible physical interactions
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Figure 1: Method Synthesis

with the process. LTL properties on the global state of the system
are specified and translated by ASLAN++ into properties that can
be checked by CL-Atse. The method is applied to a use case of water
treatment plant called SWaT, yet requiring a thousand lines of code
and fifty entities to model.

The main limitation of current integrated methods is twofold.
Formally modeling an entire system including behaviors, compo-
nents, messages, etc. is time consuming and requires expertise in
both cybersecurity and in formal methods to create the model prop-
erly. Secondly, even if the models are less complex than unified
methods (they do not include failures), the models are still exposed
to combinatorial explosion due to their high level of detail. Authors
in [14] claim that they optimized their attacker model using re-
inforcement learning to avoid this limitation. However, they give
no explanations on how this optimization is made and the size
of their examples shown remain simple. For instance, modeling a
physical process made of a five states automaton already generates
an automaton with more than 100.000 states using their method,
ineluctably succumbing to combinatorial explosion.

Related works can also be found with different goals than risk
assessment. For instance, Monzer [21] designs a behavioral intru-
sion detection system based on hybrid automata that include a very
fine modeling of the physical process and network topology. They
also face a combinatorial explosion. On the other hand, McLaugh-
lin [19] produces attack scenarios by dynamically analyzing inputs
and outputs of a PLC using Buchi automata. Yet, they only consider
a partial model of the physical process.

3 METHODOLOGY
We propose a safety/security risk identification method which aims
to generate attack scenarios (communication interruption, packet
forging, information reading, information modification that modify
the behavior of the PLC logic) that compromise the infrastructure’s
safety. This approach is divided into three successive steps. The
first one allows to convert PLC logic into a finite automaton. Then,
within this automaton, we identify the data that an attacker must
target in order to compromise the safety functions of the system.
Finally, we determine the feasibility of these attacks by analyzing

network vulnerabilities. A synthesis of the method is provided in
Figure 1.

3.1 Transformation of the PLC Logic into a
Finite Automaton

In this step, we aim to exhaustively explore the behavior of the PLC
logic. For that, we propose to transform SFC PLC programming
language, provided by IEC 61131-3, into a Mealy machine. Mealy
machines are finite state transducers. Finite state means that the
automaton has a finite number of state. A transducer is a specific
automaton where inputs are transformed to outputs. A Mealy ma-
chine is characterized by the fact that its outputs depend on both
the inputs and the current state, formally defined as follows:

• A nonempty set of inputs 𝐼𝑀
• A nonempty set of outputs 𝑂𝑀

• A nonempty set of states 𝑆𝑀
• An initial state 𝑠𝐼𝑛𝑖𝑡𝑀 ∈ 𝑆𝑀
• Transition function 𝛿𝑀 : 𝑆𝑀 × 𝐼𝑀 −→ 𝑆𝑀
• Output function _𝑀 : 𝑆𝑀 × 𝐼𝑀 −→ 𝑂𝑀

Knowing that all IEC 61131-3 languages are implementation
languages, it is theoretically possible to describe the behavior of
the PLC in any of them. For the rest of this article, we choose the
SFC language to describe our method. The SFC language allows to
structure a PLC program with steps and transitions. The steps are
linked together by transitions. At the beginning of the program,
the initial steps are activated, i.e., the actions associated with these
steps are executed. Then, the program can move from step to step
through transitions which are Boolean functions to be satisfied.
It is possible to write SFC transitions and actions with other IEC
61131-3 languages.

To translate SFC into a Mealy machine, we rely on the work
of Provost et al. [23]. They define a process to translate Grafcet
specifications into a Mealy machine for conformance test purposes.
For that, they build a Stable Location Automaton (SLA) that rep-
resents all stable states of the logic described by the Grafcet and
possible evolution between these states. Then, they translate this
automaton into an equivalent Mealy machine. Provost et al. discuss
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the difference between the Grafcet specification which describes
a behavior and the SFC program which implements this behavior.
They specify that the main difference lies in the evolution of the
models which, in the case of the Grafcet, is instantaneous and, for
the SFC, is defined by the PLC cycle time between each scan of the
inputs. In our case, we do not take in account this parameter and
can assume that SFC works as Grafcet.

SFC (as well as other IEC 61131-3 languages) allows to associate
boolean predicates to be satisfied as conditions. Some of the boolean
variables used in these predicates can be seen as the satisfaction of
a condition and not as a binary variable, as could be a switch. For
example, a boolean variable named X could be the result of a predi-
cate Y > 5, where Y is a discrete value. We will show in Section 3.3
how to use a Satisfiability Modulo Theories (SMT) solver for the
case of predicates involving discrete values. Now, that our Mealy
machine is built and consequently the behavior of the automaton
exhaustively defined, we are interested in identifying the data that
can compromise the safety.

3.2 Identification of Data Compromising Safety
ICS are designed to provide a service, such as power grid man-
agement, while protecting materials, people, and the environment
from harm. As mentioned above, this protection called safety, is the
most important function of the system, and therefore, the one we
want to secure against cyberattacks. In our method we define the
safety functions to be insured in the form of logical implications
between a set of inputs and outputs (e.g., 𝐴&¬𝐵 =⇒ 𝐶) where
inputs are the antecedent and outputs are the consequent. In case of
the safety function that prevent of a tank overflow, the antecedent
will describe a critical state of the process (e.g tank is full) and
the consequent will describe the output allowing to prevent the
hazard (e.g., filling valve is closed). Then, for each of the identified
safety functions, we exhaustively search for what we refer as critical
transitions in the Mealy machine. We qualify transitions as critical
when a safety protection control is executed by the PLC (modeled
by the logical implication) to prevent an hazard. For the overflow
example, we find when the tank is full, and thus, the filling valve
command is false. We will show in this step that, upon acting on
these critical transitions, it is possible for a cyberattacker to modify
the behavior of the PLC and to compromise the safety of the system.
The procedure to search for critical transitions is provided in the
Algorithm 1.

Critical transitions define events which trigger the safety func-
tion. For example, when an electrical fault occurs (event), a circuit
breaker is tripped (response) to protect the electrical network. With
regard of this protection function, an attacker can disrupt the safety
response. We define two types of attacks: upstream and downstream
attacks. Upstream of the protection command (source state of the
critical transition), the attacker can deny or alter data to mask the
electrical fault, thereby compromising safety. Downstream of the
protection command (destination state of the critical transition),
the attacker can inject false information to force a response such
as closing the circuit breaker even though the electrical fault is still
occurring. Whether in upstream or downstream attacks, cyberat-
tacks aim to distort the information coming from the process to the
PLC so that it behaves in an inappropriate way.

Algorithm 1: Finding critical transitions for a safety func-
tion
Data:Mealy machine; Safety function
Result: Critical transitions for the safety function
begin

𝑀 ←−𝑚𝑒𝑎𝑙𝑦𝑀𝑎𝑐ℎ𝑖𝑛𝑒 ;
𝑠𝐼𝑛 ←− 𝑠𝑎𝑓 𝑒𝑡𝑦𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐴𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡 ;
foreach 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑀 do

if 𝑠𝐼𝑛 ∈ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 then
𝐴𝑑𝑑𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑙𝑖𝑠𝑡𝑂 𝑓𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠

else
next;

End foreach
End

After having identified all critical transitions for a safety function,
we look for any cyberattack on data that compromise safety. In
upstream attacks, we search data that allow to satisfy the critical
transition, and thus, trigger the safety protection. These data are
defined as ANDBoolean expression into the critical transition. Thus,
the attacker only needs to mask to the PLC the refreshment of one
of these data to deny the safety command. This attack requires that
the data we wish to compromise must change value to satisfy the
critical transition (e.g. to trip the circuit breaker, the electrical fault
value must change from False to True) and the emitted output is
the opposite of the safety one (e.g, the circuit breaker must not
be tripped). For that, we have to find every transition, pointing to
our state, where the Boolean function define explicitly the value
of the data that the attacker wants to compromise. These previous
transitions will give us states from which the attack can be done.
An example is shown in Figure 2.

Figure 2: Upstream Attack Identification

Downstream attacks, consist in injecting data that satisfy a tran-
sition in order to force a specific output. In our case, an attacker
wants to force the opposite output of safety command. For that,
we look for every transitions originating from our state, where the
emitted output is opposite to the safety command. Then, the attack
can be realized by injecting data that satisfy one of these transitions.
An example is provided in Figure 3.

3.3 Generation of Attack Scenarios that
Compromise Safety

As discussed in step 2, unprotected data can lead to safety compro-
mising cyberattacks. To ensure that these attacks are feasible, we
need to identify and analyze unprotected data through a cyberse-
curity risk assessment. In this paper, we do not focus on classical
cybersecurity risk analysis for which it exits a variety of proven
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Figure 3: Downstream Attack Identification

methods such as EBIOS [3] or the IEC 62443-3-2 [13] and the IEC
27005 [11] standards.

For our method, we suppose that the attacker has access to the
industrial network, where PLCs operate. For that, an attacker can,
for example, connect to an internet exposed device with the help of
a search engine like Shodan 1 or by spear phishing attacks like in
the Ukrainian power grid attack in December 2015 [15]. Majority
of the industrial protocols do not provide any security features
(Confidentiality, Integrity, and Authenticity), and therefore infor-
mation feedback to the PLCs and their commands can be corrupted
by an attacker. In the following, we define 4 possible attacks on the
industrial network:
• Communication interruption: In case of communica-
tion interruption, information (process data or SCADA com-
mands) are not available to the PLC and thus cause a deny
of control feedback.
• Packets forging: In case of packets forging, an attacker is
able to set undesirable false data/commands values leading
to an injection of false feedback.
• Information reading: Reading a data/command has no
direct consequences on the PLC behavior. However, it can
be used by an attacker to gain knowledge on the process and
prepare attacks.
• Information modification: In case of data/command mod-
ification, an attacker can set process data to undesirable or
false values causing an injection of false feedback.

We assume that data included in vulnerable communication
channels are also vulnerable. For instance, if a communication
channel does not provide authentication mechanism, a Man-in-the-
Middle attack can be executed allowing an attacker to deny, tamper
data and forge packets in that channel and thus deny feedback
and inject false information. This will give us, all the data that the
threat is able to attack and through which channel. In this paper,
we focus on network attacks. Therefore, all PLC data not exposed
to the network are considered as out of scope of the attacker (such
as a timer between two tasks).

Then, we use these vulnerable data to perform safety compromis-
ing attacks identified in step 2. For that, we identify if the required
data, for each attack, are vulnerable. If all data required by the attack
are vulnerable, then the attack is considered as feasible. However,
upstream and downstream attacks do not require the same vulner-
abilities. Indeed, as discussed above, upstream attacks aim to mask
data refreshment and downstream attacks to force an output by
injecting data. Therefore, upstream attacks require a denial or a
tampering of data contrary to downstream attacks that require a

1https://www.shodan.io/explore/category/industrial-control-systems

tampering or a forging of data. These characteristics must be taken
into account during the attack feasibility checking.

Now, we can build attack scenarios that compromise safety by
mapping feasible attacks with their data vulnerabilities. It is possi-
ble to build a new scenario for each vulnerability compromising the
same variable. As mentioned in step 1, when building attack sce-
narios, we use a SMT Solver to determine if an equation containing
discrete data is satisfiable and we determine, by a simplification, the
range of this data. An SMT solver is a tool that determines whether
a complex mathematical formula including real numbers, integers,
and/or data structures is satisfiable and yield resulting values for
each variable.

3.4 Evaluation results
Our methodology provides two quantitative results that help cy-
bersecurity experts to prioritize their remediation.

The first one is theminimal set of data to secure in order to
protect the system against all attacks. For that purpose, we realize
a Boolean minimization between all attacks scenarios to determine
the minimal set of variable to secure in order to protect the system.
For example, if two downstream attacks require, respectively, the
variables 𝐴,𝐶 and 𝐵,𝐶 to succeed, the protection of the variable 𝐶
allows to remedy both attacks. This output is appropriate for both
types of attacks, nevertheless, it is more relevant for downstream
attacks. Indeed, this type of attack requires that the attacker is
able to simultaneously modify and/or falsify all data to satisfy the
transition. Therefore, if only one of the variables is not accessible
to the attacker, the attack is not feasible. Conversely, for upstream
attacks, the attacker only needs to compromise a single variable to
not satisfy the transition and thus for the same transition we may
need to protect several, or even all, variables.

The second result is the set of critical communication chan-
nels (paths) of the network architecture, ranked by criticality. This
criticality is determined by the variables, more precisely their fre-
quency of occurrence and the severity of the attack scenarios that
they belong, which transit inside these communication channels.
Each scenario compromises a specific safety function for which we
define a severity score based on its impacts. For example, a safety
function that can potentially impact human lives seems more se-
vere than a material destruction. Then, each time a data is present
in a scenario, we increment a counter referring to this variable.
Moreover, the value of the increment is weighted according to the
scenario severity permitting to calculate the criticality of the vari-
ables. At the end, we have a ranking of the most critical variables
(highest score), and thus, we determine the most critical communi-
cation channels by adding up the score of the whole variables (the
weighted number of occurrences in attack scenarios) that cross it.

4 EVALUATION
We demonstrate our methodology on two use cases. In Section 4.1,
we first introduce a simple use case to illustrate all steps of our
methodology. Then in Section 4.2, we show how we scale up on
a representative industrial size use case: the Tennessee Eastman
chemical process [8].
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(a) Schematic View

(b) PLC Logic for the Use Case (SFC)

Figure 4: Selector Use Case

4.1 Box Sorting Use Case
We first describe a simple use case to depict each step of the method-
ology presented in Section 3. This use case, presented in Figure 4a,
is a system for sorting boxes according to whether they are small
or large following the logic of the PLC (SFC) presented in Figure 4b.
To do this, a detector is used to determine whether the box is large
or small by activating or deactivating two Boolean variables 𝑆𝐵𝑜𝑥
and 𝐿𝐵𝑜𝑥 . The piston P1 is then activated, pushing the box to the
left. A 𝐹𝑟𝑜𝑛𝑡𝑃2 detector will determine that the box is aligned with
the T2 conveyor belt. If the box was small, the PLC logic will stop
piston P1 and start piston P2. If the box was large, the piston P1
will continue to push the box towards the conveyor belt T3. When
the detector 𝐹𝑟𝑜𝑛𝑡𝑃3 is triggered, the PLC logic will stop piston P1
and activate piston P3. The pistons are controlled by 2 PLCs, each
with its own logic. The first PLC controls piston 1 and the second
one controls pistons 2 and 3. All the detectors and actuators are
described in the Table 1.

Name Description
P1: Piston 1 Actuator to move the boxes horizontally in front of the

piston 2 and the piston 3
P2: Piston 2 Actuator to move the small boxes vertically on the con-

veyor belt 2
P3: Piston 3 Actuator to move the large boxes vertically on the con-

veyor belt 3
P1Back Sensor to detect when the piston 1 is backwards
P2Back Sensor to detect when the piston 2 is backwards
P3Back Sensor to detect when the piston 3 is backwards
LBox: Large
box
SBox: Small
box

Sensor to detect the size of the box (small or large)

FrontP2 Sensor to detect the presence of a box in front of the
piston 2

FrontP3 Sensor to detect the presence of a box in front of the
piston 3

T2 Sensor to detect the presence of a box on the belt 2
T3 Sensor to detect the presence of a box on the belt 3
Table 1: Identification Table of Detectors and Actuators

The first step of the method is to transform the PLC logic into
a Mealy machine. We choose to realize a Mealy machine for each
PLC, and not for the complete system (the set of the two PLCs) for
the following reasons:
• The analysis of cybersecurity with respect to the overall
safety of the industrial system generally leads to combi-
natorial explosions as described in [24] or in [14] and we
consider that is more appropriate to focus on the logic of a
PLC. Moreover, each PLC is generally designed to operate
independently (although communicating with other PLCs),
this restriction to a single PLC is consistent with the design
of the industrial system logic.
• In a Mealy machine, a data is unique. However, in reality,
the data will be distributed, and therefore multiplied to all
the devices that use this data. In this set of possible paths
of the data, some can be secured and others not, and thus
the same logical data (Mealy machine) can be secured or not
according to the physical context. To overcome this problem,
it would be necessary to distinguish each physical context
of the data, which is equivalent to distinguish each PLC in
the Mealy machine.
• An actuator is driven by a single PLC. Thus, the commands
(outputs) of each PLC are unique and therefore independent
of other PLCs.

Our method can be extended to the global logic of the system,
by performing the Cartesian product of all the PLC logics (Mealy
machine) of the system. Thus, restricting to a single PLC is a per-
formance choice to decrease the calculation and the analysis time
of the results and not a limitation. However, this choice eliminates
the possibility of handling distributed safety functions.

To transform SFC programs into Mealy machines, we rely on the
work of [23]. As a side note, the link to the source code is obsolete
but a fork of the code is available on [22]. In this particular case,
each SFC step will correspond to a state in the Mealy machine
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(the step 1 of the SFC will correspond to the state 1 of the Mealy
machine, the step 2 of the SFC will correspond to the state 2 of the
Mealy machine, etc.). For the integrity of the system, we want that
the boxes are always evacuated from the conveyor belt 1 in order to
avoid congestion and, a fortiori, a boxes degradation. We establish
a safety function that forces the advance of piston 1 when a box is
detected. We can translate this property by the implications 𝑆𝐵𝑜𝑥
=⇒ 𝐴𝑣𝑃1 and 𝐿𝐵𝑜𝑥 =⇒ 𝐴𝑣𝑃1. Since the method is identical for
both implications, we will develop the rest of the method only with
the first implication.

We are now looking for the critical transitions for the safety
function we have just defined. We apply the algorithm presented
in Figure 1 which consists in searching within the Mealy machine
the transitions containing as input, at least, 𝑆𝐵𝑜𝑥 . In our case, there
are three critical transitions which link:
• State 1 to state 2 with for inputs 𝑆𝐵𝑜𝑥 &¬𝐹𝑟𝑜𝑛𝑡𝑃2 &¬𝐿𝐵𝑜𝑥
and for output 𝐴𝑣𝑃1
• State 4 to state 2 with for inputs 𝐹𝑟𝑜𝑛𝑡𝑃3 & 𝑃1𝐵𝑎𝑐𝑘 & 𝑆𝐵𝑜𝑥

&¬𝐹𝑟𝑜𝑛𝑡𝑃2 &¬𝐿𝐵𝑜𝑥 and for output 𝐴𝑣𝑃1
• State 5 to state 2 with for inputs𝑃1𝐵𝑎𝑐𝑘 & 𝑆𝐵𝑜𝑥 &¬𝐹𝑟𝑜𝑛𝑡𝑃2

&¬𝐿𝐵𝑜𝑥 and for output 𝐴𝑣𝑃1.
Each of these critical transitions allow us to define upstream and

downstream attacks. For the upstream attacks, we want the safety
function not to be executed, and therefore, the critical transitions
never to be satisfied. In our method, we have no knowledge of the
physical process, we only know the logic of the PLC. To ensure that
these attacks are not detected by NIDS, we identify the variables
that are naturally in the opposite state of the critical transition
because if an attacker modifies a variable himself to be in a state
that does not satisfy the transition, this will probably modify the
semantics of the process, and thus, will be detected by a allowlist
NIDS. For example, to attack the first critical transition (state 1
to state 2) we look for all transitions that have the state 1 as the
destination state, ¬𝑆𝐵𝑜𝑥 | 𝐹𝑟𝑜𝑛𝑡𝑃2 | 𝐿𝐵𝑜𝑥 as the input value, and
¬𝐴𝑣𝑃1 as output. Such a transition exists between states 2 and
1 which has as input 𝐹𝑟𝑜𝑛𝑡𝑃2 & 𝑃1𝐵𝑎𝑐𝑘 &¬𝐿𝐵𝑜𝑥 &¬𝑆𝐵𝑜𝑥 and
all its outputs to False. This transition, coupled with the critical
transition (state 1 to state 2), allows us to generate two attacks as
follows:

(1) The industrial system evolves from the state 2 to the state 1
with the transition 𝐹𝑟𝑜𝑛𝑡𝑃2 & 𝑃1𝐵𝑎𝑐𝑘 &¬𝐿𝐵𝑜𝑥 &¬𝑆𝐵𝑜𝑥 .
An attacker blocks the refreshment of the value 𝑆𝐵𝑜𝑥 . When
the small box arrives, the PLC does not receive the informa-
tion and compromises the safety function.

(2) The industrial system evolves from the state 2 to the state 1
with the transition 𝐹𝑟𝑜𝑛𝑡𝑃2 & 𝑃1𝐵𝑎𝑐𝑘 &¬𝐿𝐵𝑜𝑥 &¬𝑆𝐵𝑜𝑥 .
An attacker blocks the refreshment of the value 𝐹𝑟𝑜𝑛𝑡𝑃2.
When the small box arrives, the value 𝐹𝑟𝑜𝑛𝑡𝑃2 being always
at True, the PLC evolves from the state 1 to state 3 sending
the order to the piston to move back and compromises the
safety function.

The objective of the downstream attacks is, for our safety func-
tion, to force the stop or the recoil of the piston 1 when it starts to
evacuate the box. These attacks occur from the destination state of
the critical transition. For example, for the first critical transition
(state 1 to state 2), the attacks will operate from the state 2. We are

Figure 5: DFD of the Use Case

therefore looking for the set of transitions that have the state 2 as
their source state and ¬𝐴𝑣𝑃1 as output. Such a transition exists
between the state 2 and 3 which has 𝐹𝑟𝑜𝑛𝑡𝑃2 &¬𝑃1𝐵𝑎𝑐𝑘 as input
and 𝑅𝑒𝑃1 as output. We can thus construct the following attack:
The industrial system applies the safety function by evolving from
the state 1 to state 2 (critical transition). An attacker injects 𝐹𝑟𝑜𝑛𝑡𝑃2
&¬𝑃1𝐵𝑎𝑐𝑘 to the PLC, forcing the transition between the state 2
and 3, which results in the sending of a backward command by the
PLC, thus compromises the safety function. Knowing that this tran-
sition is legitimate, as it belongs to the Mealy machine, allowlist
NIDS solutions will have great difficulty to detect these attacks.
The table 2 provides the set of attacks found for the safety function
𝑆𝐵𝑜𝑥 =⇒ 𝐴𝑣𝑃1 and need to be read as follows:
• Upstream attacks: it is possible to compromise the
safety function if the header value (e.g ¬𝑆𝐵𝑜𝑥) is mali-
ciously maintained after one of the listed events (tran-
sitions below the header value) occurred. For instance,
if the process goes from 𝑠𝑡𝑎𝑡𝑒2 to 𝑠𝑡𝑎𝑡𝑒1 (with the
event 𝐹𝑟𝑜𝑛𝑡𝑃2& 𝑃1𝐵𝑎𝑐𝑘 &¬𝑆𝐵𝑜𝑥), an attacker can main-
tain ¬𝑆𝐵𝑜𝑥 value for the PLC and compromises the safety
function 𝑆𝐵𝑜𝑥 =⇒ 𝐴𝑣𝑃1 if the process goes from 𝑠𝑡𝑎𝑡𝑒1 to
𝑠𝑡𝑎𝑡𝑒2 (critical transition).
• Downstream attacks: it is possible to compromise the
safety function if an attacker can maliciously force one of
the listed events (transitions) after that the critical transi-
tion occurred. For example, if the process goes from 𝑠𝑡𝑎𝑡𝑒1
to 𝑠𝑡𝑎𝑡𝑒2 (critical transition), an attacker can force 𝐹𝑟𝑜𝑛𝑡𝑃2
value to the PLC (event that force the PLC logic to go from
𝑠𝑡𝑎𝑡𝑒2 to 𝑠𝑡𝑎𝑡𝑒3) and compromises the safety function.

If we analyse theminimal data set to secure, obtained from our
method, which permits to determine if there are data in common to
all downstream attacks, we notice that all attacks require that the
attacker must be able to modify or forge either FrontP2 or P1Back.
In a remediation approach, cybersecurity experts will be able to
prioritize their remediation by protecting the FrontP2 or P1Back
data and thus protects the system from all downstream attacks.
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Critical transi-
tions

Upstream attacks Downstream attacks

𝑆𝑡𝑎𝑡𝑒1→ 𝑆𝑡𝑎𝑡𝑒2 ¬ SBox 𝑆𝑡𝑎𝑡𝑒2→ 𝑆𝑡𝑎𝑡𝑒4
𝑆𝑡𝑎𝑡𝑒2→ 𝑆𝑡𝑎𝑡𝑒1 𝑆𝑡𝑎𝑡𝑒2→ 𝑆𝑡𝑎𝑡𝑒3
𝑆𝑡𝑎𝑡𝑒4→ 𝑆𝑡𝑎𝑡𝑒1 𝑆𝑡𝑎𝑡𝑒2→ 𝑆𝑡𝑎𝑡𝑒1(𝑡𝑟1)
𝑆𝑡𝑎𝑡𝑒3→ 𝑆𝑡𝑎𝑡𝑒1 𝑆𝑡𝑎𝑡𝑒2→ 𝑆𝑡𝑎𝑡𝑒1(𝑡𝑟2)
𝑆𝑡𝑎𝑡𝑒5→ 𝑆𝑡𝑎𝑡𝑒1

FrontP2
𝑆𝑡𝑎𝑡𝑒2→ 𝑆𝑡𝑎𝑡𝑒1

𝑆𝑡𝑎𝑡𝑒4→ 𝑆𝑡𝑎𝑡𝑒2 ¬ SBox | LBox | ¬ FrontP3 same
𝑆𝑡𝑎𝑡𝑒1→ 𝑆𝑡𝑎𝑡𝑒4
𝑆𝑡𝑎𝑡𝑒2→ 𝑆𝑡𝑎𝑡𝑒4
𝑆𝑡𝑎𝑡𝑒3→ 𝑆𝑡𝑎𝑡𝑒4
𝑆𝑡𝑎𝑡𝑒5→ 𝑆𝑡𝑎𝑡𝑒4

FrontP2
𝑆𝑡𝑎𝑡𝑒2→ 𝑆𝑡𝑎𝑡𝑒4

𝑆𝑡𝑎𝑡𝑒5→ 𝑆𝑡𝑎𝑡𝑒2 ¬ SBox | LBox | ¬ P1Back same
𝑆𝑡𝑎𝑡𝑒1→ 𝑆𝑡𝑎𝑡𝑒5

Table 2: Attacks for the Safety Function SBox =⇒ AvP1

We nowmove to the last step where we generate attack scenarios
based on network vulnerabilities that we identify through a risk
analysis. The data flow diagram (DFD) of the use case, depicted
in 5, shows the data flows between the various devices (sensors,
actuators, and PLCs) where the solid line data flows are inputs or
commands of the PLC 1 and the dotted ones are inputs or commands
of the PLC 2. In this diagram, the PLC 1 and the PLC 2 execute,
respectively, the left and the right SFC program of the Figure 4b.

In order to correlate the vulnerable communication channels
with the data that they impact, we used this DFD as follows: if,
the cybersecurity risk analysis identifies that the communication
protocol between the FrontP2 detector, the P1Back detector, and
the PLC 1 is vulnerable to Man-in-the-Middle (MitM) attacks due
to a lack of authenticity, we consider 𝐹𝑟𝑜𝑛𝑡𝑃2 and 𝑃1𝐵𝑎𝑐𝑘 data as
vulnerable to forging, reading and modification. For the following,
we will consider that the cybersecurity risk analysis do not identify
additional vulnerabilities, and thus, the rest of the data are secure.

With the risk analysis, we can determine what safety functions
can be compromised and their impacts on the system. To do this,
we filter out the set of attacks that require data only available on se-
cured communication bus. According to the Table 2, there are only
three possible upstream attacks for the data 𝐹𝑟𝑜𝑛𝑡𝑃2 and 𝑃1𝐵𝑎𝑐𝑘
and only one for the downstream attacks (state 2 to state 3). By
combining the risk analysis and the identification of critical transi-
tions and variables, we generate attack scenarios that compromise
security. For example, an attacker connected on the industrial sys-
tem networks can exploit the lack of security in the communication
protocol between the FrontP2 detector and the PLC to perform a
MitM attack. Thus, the attacker can corrupt the 𝐹𝑟𝑜𝑛𝑡𝑃2 value to
keept it True after the transition from state 2 to state 1. When a
small box arrives, the PLC will automatically order piston 1 to move
backwards (from state 1 to state 3) and thus create a congestion of
boxes on the conveyor belt 1.

Finally, we use the ranked set of critical communication
channels, provided by our method in Section 3.4, if cybersecu-
rity experts need to prioritize their remediation. In our example,
we have only two unsecured data, 𝐹𝑟𝑜𝑛𝑡𝑃2 and 𝑃1𝐵𝑎𝑐𝑘 , which re-
spectively participate in 3 (2 upstream and 1 downstream) and 2
(1 upstream and 1 downstream) scenarios. Knowing that each of
these two variables have their own communication channel, we
recommend to protect the communication between the FrontP2 de-
tector and the PLC as a priority if a choice is to be made. Moreover,
the minimal set of data to secure indicates that all downstream
attacks required, at least, to corrupt 𝐹𝑟𝑜𝑛𝑡𝑃2. Indeed, the network
architecture of our use case is quite trivial, however, in a much
more complex architecture where a global protection of the sys-
tem is not possible (often for financial reasons) these results help
cybersecurity experts to prioritize and justify their remediation
by protecting the most critical communications that allow both to
decrease the surface and the probability of an attack.

4.2 Results on the Tennessee Eastman Process
In this section, we aim to demonstrate that our methodology is able
to scale up to representative industrial size examples. We thus per-
form the modeling and analysis of the Tennessee Eastman chemical
process [8], which is considered as a classic benchmark for indus-
trial system modeling and simulation. The aim of this chemical
process (see Figure 6) is to synthesize two products by a chemi-
cal reaction involving four reactants. This industrial production
method is based on the process of dealkylation of toluene into ben-
zene and methane. The whole chemical reaction contains several
basic reactions (mixing, separation, heating, cooling, etc.), including
the production of two additional reactants. Feedback loops allow
the residues to be fed back into the reaction to limit losses.

Figure 6: Representation of the Tennessee-Eastman Process

Different implementations of this process have been proposed [4,
5, 25–27]. The one we use includes close to 70 different variables,
including flow rates, pressures, temperatures, levels, mole fractions,
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and compressor power outputs. The operator may control over 36
of these variables (flow rates, valve positions, and reaction agita-
tor speed) to make sure the chemical process is operating under
control. Other variables are data collected from various sensors
(liquid level, etc.). In our reference implementation, the process is
divided into three sub-processes, each controlling a part of Figure 6.
The total implementation is made of eight SFC with eight associ-
ated ladder graphs. We analyzed the model with respect to three
safety functions: “preventing the overflowing of S3”, “preventing
the overflowing of S1”, and “preventing the overflowing of S2”.

Using the methodology presented in Section 3, we are able to
analyze the safety of this implementation of the Tennessee Eastman
process on a Dell Latitude 5500 laptop with an Intel(R) Core(TM)
i5-8365U CPU @1.60GHz-1.90GHz and 16Gb of RAM in 37 seconds.
Since it was implemented into three sub-processes, we analyzed
them separately (in respectively 29, 7 and 1 seconds ). The mealy
machines associated to each of the SFCs and Ladder files contain re-
spectively over 156, 180, and 24 states and also 15130, 15960 and 448
transitions. These states and transitions numbers only refer to the
bare size of the physical process we manage to handle, prior to be
crossed with the cybersecurity risk analysis. This highly contrasts
with related works cite in Section 2, where most of the proposed
approached only considered use cases represented with an automa-
ton including under ten states (usually with a similar number of
variables). We find 12599 attack scenarios in total for safety func-
tions to check (respectively 7414, 5149, and 36). We analyzed only
one safety function per sub-process to show quantified result but
this is not a limitation according to the calculation time of attack
scenarios which are respectively equal to 8, 5 and less than 1 sec-
onds and can easily scale up to more properties. If the number of
detected attacks may seem high, it is worth mentioning that we
only consider a network attacker and thus protecting the network
where the variables referred in the attacks will prevent them. The
method results shown in Section 3.3 will help this process.

5 CONCLUSION AND PERSPECTIVES
In this paper, we proposed and applied a new methodology to iden-
tify cybersecurity risks on industrial systems. This method is based
on the conversion of the PLC logic into a mathematical model called
Mealy machine that allows us to exhaustively define the behavior
of the PLC. Then, we showed how to exploit, from a cyberattack
on the network, the legitimate behavior of this PLC to compromise
safety functions. Moreover, our safety-security model, based on
the PLC logic, reduces combinatorial explosion and automates the
analysis. Due to the exploitation of the legitimate behavior of the
PLC, the attack scenarios that we are able to identify are difficult to
detect for the standard solutions used in industrial systems. Finally,
our methodology provides two quantitative results: the minimal
set of data to secure and the ranked set of critical communication
channels for the analyzed system.

We are currently working on the development of a tool that
automates this method from an XML file in PLCopen format. In the
future, we plan to extend this method to automatically generate a
network topology that is resistant to identified attacks while taking
into account the specific constraints of industrial systems.
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